Display options
Share it on

Chin Med J (Engl). 2021 Dec 01;134(24):2922-2930. doi: 10.1097/CM9.0000000000001887.

Microbe-based management for colorectal cancer.

Chinese medical journal

Zi-Yun Gao, Zhe Cui, Yu-Qing Yan, Li-Jun Ning, Zhen-Hua Wang, Jie Hong

Affiliations

  1. State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China.
  2. Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China.

PMID: 34855639 DOI: 10.1097/CM9.0000000000001887

Abstract

ABSTRACT: Colorectal cancer (CRC) is one of the most prevalent, most lethal cancers in the world. Increasing evidence suggests that the intestinal microbiota is closely related to the pathogenesis and prognosis of CRC. The normal microbiota plays an essential role in maintaining gut barrier function and the immune microenvironment. Recent studies have identified carcinogenic bacteria such as enterotoxigenic Bacteroides fragilis (ETBF) and Streptococcus gallolyticus (S. gallolyticus), as well as protective bacterial such as Akkermansia muciniphila (A. muciniphila), as potential targets of CRC treatment. Gut microbiota modulation aims to restore gut dysbiosis, regulate the intestinal immune system and prevent from pathogen invasion, all of which are beneficial for CRC prevention and prognosis. The utility of probiotics, prebiotics, postbiotics, fecal microbiota transplantation and dietary inventions to treat CRC makes them novel microbe-based management tools. In this review, we describe the mechanisms involved in bacteria-derived colorectal carcinogenesis and summarized novel bacteria-related therapies for CRC. In summary, we hope to facilitate clinical applications of intestinal bacteria for preventing and treating CRC.

Copyright © 2021 The Chinese Medical Association, produced by Wolters Kluwer, Inc. under the CC-BY-NC-ND license.

References

  1. Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin 2020; 70:145–164. doi: 10.3322/caac.21601. - PubMed
  2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394–424. doi: 10.3322/caac.21492. - PubMed
  3. Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut 2017;66:683–691. doi: 10.1136/gutjnl-2015-310912. - PubMed
  4. Keum N, Giovannucci E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat Rev Gastroenterol Hepatol 2019;16:713–732. doi: 10.1038/s41575-019-0189-8. - PubMed
  5. Cao W, Chen HD, Yu YW, Li N, Chen WQ. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020. Chin Med J 2021;134:783–791. doi: 10.1097/CM9.0000000000001474. - PubMed
  6. Song M, Chan AT, Sun J. Influence of the gut microbiome, diet, and environment on risk of colorectal cancer. Gastroenterology 2020;158:322–340. doi: 10.1053/j.gastro.2019.06.048. - PubMed
  7. Cheng Y, Ling Z, Li L. The intestinal microbiota and colorectal cancer. Front Immunol 2020;11:615056. doi: 10.3389/fimmu.2020.615056. - PubMed
  8. Schwabe RF, Jobin C. The microbiome and cancer. Nat Rev Cancer 2013;13:800–812. doi: 10.1038/nrc3610. - PubMed
  9. Saus E, Iraola-Guzman S, Willis JR, Brunet-Vega A, Gabaldon T. Microbiome and colorectal cancer: roles in carcinogenesis and clinical potential. Mol Aspects Med 2019;69:93–106. doi: 10.1016/j.mam.2019.05.001. - PubMed
  10. Takiishi T, Fenero CIM, Camara NOS. Intestinal barrier and gut microbiota: shaping our immune responses throughout life. Tissue Barriers 2017;5:e1373208. doi: 10.1080/21688370.2017.1373208. - PubMed
  11. Paone P, Cani PD. Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut 2020;69:2232–2243. doi: 10.1136/gutjnl-2020-322260. - PubMed
  12. Sobhani I, Bergsten E, Couffin S, Amiot A, Nebbad B, Barau C, et al. Colorectal cancer-associated microbiota contributes to oncogenic epigenetic signatures. Proc Natl Acad Sci USA 2019;116:24285–24295. doi: 10.1073/pnas.1912129116. - PubMed
  13. Janney A, Powrie F, Mann EH. Host-microbiota maladaptation in colorectal cancer. Nature 2020;585:509–517. doi: 10.1038/s41586-020-2729-3. - PubMed
  14. Tilg H, Adolph TE, Gerner RR, Moschen AR. The intestinal microbiota in colorectal cancer. Cancer Cell 2018;33:954–964. doi: 10.1016/j.ccell.2018.03.004. - PubMed
  15. Xu S, Yin W, Zhang Y, Lv Q, Yang Y, He J. Foes or friends? Bacteria enriched in the tumor microenvironment of colorectal cancer. Cancers (Basel) 2020;12:372. doi: 10.3390/cancers12020372. - PubMed
  16. Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet 2019;394:1467–1480. doi: 10.1016/s0140-6736(19)32319-0. - PubMed
  17. Wong SH, Yu J. Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat Rev Gastroenterol Hepatol 2019;16:690–704. doi: 10.1038/s41575-019-0209-8. - PubMed
  18. Dai Z, Coker OO, Nakatsu G, Wu WKK, Zhao L, Chen Z, et al. Multi-cohort analysis of colorectal cancer metagenome identified altered bacteria across populations and universal bacterial markers. Microbiome 2018;6:70. doi: 10.1186/s40168-018-0451-2. - PubMed
  19. Kwong TNY, Wang X, Nakatsu G, Chow TC, Tipoe T, Dai RZW, et al. Association between bacteremia from specific microbes and subsequent diagnosis of colorectal cancer. Gastroenterology 2018;155:383–390. e8. doi: 10.1053/j.gastro.2018.04.028. - PubMed
  20. Lau HCH, Sung JJ, Yu J. Gut microbiota: impacts on gastrointestinal cancer immunotherapy. Gut Microbes 2021;13:1–21. doi: 10.1080/19490976.2020.1869504. - PubMed
  21. Dixit K, Chaudhari D, Dhotre D, Shouche Y, Saroj S. Restoration of dysbiotic human gut microbiome for homeostasis. Life Sci 2021;278:119622. doi: 10.1016/j.lfs.2021.119622. - PubMed
  22. Zhang J, Haines C, Watson AJM, Hart AR, Platt MJ, Pardoll DM, et al. Oral antibiotic use and risk of colorectal cancer in the United Kingdom, 1989-2012: a matched case-control study. Gut 2019;68:1971–1978. doi: 10.1136/gutjnl-2019-318593. - PubMed
  23. Lu SSM, Mohammed Z, Haggstrom C, Myte R, Lindquist E, Gylfe A, et al. Antibiotics use and subsequent risk of colorectal cancer: a Swedish nationwide population-based study. J Natl Cancer Inst 2021;djab125. doi: 10.1093/jnci/djab125. Epub ahead of print. - PubMed
  24. Wu N, Yang X, Zhang R, Li J, Xiao X, Hu Y, et al. Dysbiosis signature of fecal microbiota in colorectal cancer patients. Microb Ecol 2013;66:462–470. doi: 10.1007/s00248-013-0245-9. - PubMed
  25. Sears CL. Enterotoxigenic Bacteroides fragilis: a rogue among symbiotes. Clin Microbiol Rev 2009;22:349–369. doi: 10.1128/CMR.00053-08. - PubMed
  26. Zamani S, Taslimi R, Sarabi A, Jasemi S, Sechi LA, Feizabadi MM. Enterotoxigenic bacteroides fragilis: a possible etiological candidate for bacterially-induced colorectal precancerous and cancerous lesions. Front Cell Infect Microbiol 2019;9:449. doi: 10.3389/fcimb.2019.00449. - PubMed
  27. Boleij A, Hechenbleikner EM, Goodwin AC, Badani R, Stein EM, Lazarev MG, et al. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin Infect Dis 2015;60:208–215. doi: 10.1093/cid/ciu787. - PubMed
  28. Cheng WT, Kantilal HK, Davamani F. The mechanism of bacteroides fragilis toxin contributes to colon cancer formation. Malays J Med Sci 2020;27:9–21. doi: 10.21315/mjms2020.27.4.2. - PubMed
  29. Wu S, Rhee KJ, Albesiano E, Rabizadeh S, Wu X, Yen HR, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med 2009;15:1016–1022. doi: 10.1038/nm.2015. - PubMed
  30. Chung L, Thiele Orberg E, Geis AL, Chan JL, Fu K, DeStefano Shields CE, et al. Bacteroides fragilis toxin coordinates a pro-carcinogenic inflammatory cascade via targeting of colonic epithelial cells. Cell Host Microbe 2018;23:203–214. e205. doi: 10.1016/j.chom.2018.01.007. - PubMed
  31. Cao Y, Wang Z, Yan Y, Ji L, He J, Xuan B, et al. Enterotoxigenic Bacteroides fragilis promotes intestinal inflammation and malignancy by inhibiting exosomes-packaged miR-149-3p. Gastroenterology 2021;161:1552–1566. e12. doi: 10.1053/j.gastro.2021.08.003. - PubMed
  32. Viljoen KS, Dakshinamurthy A, Goldberg P, Blackburn JM. Quantitative profiling of colorectal cancer-associated bacteria reveals associations between fusobacterium spp., enterotoxigenic Bacteroides fragilis (ETBF) and clinicopathological features of colorectal cancer. PLoS One 2015;10:e0119462. doi: 10.1371/journal.pone.0119462. - PubMed
  33. Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 2013;14:207–215. doi: 10.1016/j.chom.2013.07.007. - PubMed
  34. Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe 2013;14:195–206. doi: 10.1016/j.chom.2013.07.012. - PubMed
  35. Hong J, Guo F, Lu SY, Shen C, Ma D, Zhang X, et al. F. nucleatum targets lncRNA ENO1-IT1 to promote glycolysis and oncogenesis in colorectal cancer. Gut 2021;70:2123–2137. doi: 10.1136/gutjnl-2020-322780. - PubMed
  36. Yang Y, Weng W, Peng J, Hong L, Yang L, Toiyama Y, et al. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear factor-kappaB, and up-regulating expression of MicroRNA-21. Gastroenterology 2017;152:851–866. e824. doi: 10.1053/j.gastro.2016.11.018. - PubMed
  37. Yu T, Guo F, Yu Y, Sun T, Ma D, Han J, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 2017;170:548–563. e16. doi: 10.1016/j.cell.2017.07.008. - PubMed
  38. Wassenaar TM. E. coli and colorectal cancer: a complex relationship that deserves a critical mindset. Crit Rev Microbiol 2018;44:619–632. doi: 10.1080/1040841X.2018.1481013. - PubMed
  39. Iftekhar A, Berger H, Bouznad N, Heuberger J, Boccellato F, Dobrindt U, et al. Genomic aberrations after short-term exposure to colibactin-producing E. coli transform primary colon epithelial cells. Nat Commun 2021;12:1003. doi: 10.1038/s41467-021-21162-y. - PubMed
  40. Salesse L, Lucas C, Hoang MHT, Sauvanet P, Rezard A, Rosenstiel P, et al. Colibactin-producing Escherichia coli induce the formation of invasive carcinomas in a chronic inflammation-associated mouse model. Cancers (Basel) 2021;13:2060. doi: 10.3390/cancers13092060. - PubMed
  41. Fabbri A, Travaglione S, Ballan G, Loizzo S, Fiorentini C. The cytotoxic necrotizing factor 1 from E. coli: a janus toxin playing with cancer regulators. Toxins (Basel) 2013;5:1462–1474. doi: 10.3390/toxins5081462. - PubMed
  42. Xu K, Jiang B. Analysis of mucosa-associated microbiota in colorectal cancer. Med Sci Monit 2017;23:4422–4430. doi: 10.12659/msm.904220. - PubMed
  43. Allali I, Delgado S, Marron PI, Astudillo A, Yeh JJ, Ghazal H, et al. Gut microbiome compositional and functional differences between tumor and non-tumor adjacent tissues from cohorts from the US and Spain. Gut Microbes 2015;6:161–172. doi: 10.1080/19490976.2015.1039223. - PubMed
  44. Gradel KO, Nielsen HL, Schonheyder HC, Ejlertsen T, Kristensen B, Nielsen H. Increased short- and long-term risk of inflammatory bowel disease after salmonella or campylobacter gastroenteritis. Gastroenterology 2009;137:495–501. doi: 10.1053/j.gastro.2009.04.001. - PubMed
  45. Schmidt AM, Escher U, Mousavi S, Tegtmeyer N, Boehm M, Backert S, et al. Immunopathological properties of the Campylobacter jejuni flagellins and the adhesin CadF as assessed in a clinical murine infection model. Gut Pathog 2019;11:24. doi: 10.1186/s13099-019-0306-9. - PubMed
  46. Freitag CM, Strijbis K, van Putten JPM. Host cell binding of the flagellar tip protein of Campylobacter jejuni. Cell Microbiol 2017;19:e12714. doi: 10.1111/cmi.12714. - PubMed
  47. He Z, Gharaibeh RZ, Newsome RC, Pope JL, Dougherty MW, Tomkovich S, et al. Campylobacter jejuni promotes colorectal tumorigenesis through the action of cytolethal distending toxin. Gut 2019;68:289–300. doi: 10.1136/gutjnl-2018-317200. - PubMed
  48. Yang Y, Jobin C. Novel insights into microbiome in colitis and colorectal cancer. Curr Opin Gastroenterol 2017;33:422–427. doi: 10.1097/MOG.0000000000000399. - PubMed
  49. Long X, Wong CC, Tong L, Chu ESH, Ho Szeto C, Go MYY, et al. Peptostreptococcus anaerobius promotes colorectal carcinogenesis and modulates tumour immunity. Nat Microbiol 2019;4:2319–2330. doi: 10.1038/s41564-019-0541-3. - PubMed
  50. Tsoi H, Chu ESH, Zhang X, Sheng J, Nakatsu G, Ng SC, et al. Peptostreptococcus anaerobius induces intracellular cholesterol biosynthesis in colon cells to induce proliferation and causes dysplasia in mice. Gastroenterology 2017;152:1419–1433. e5. doi: 10.1053/j.gastro.2017.01.009. - PubMed
  51. Derrien M, van Passel MW, van de Bovenkamp JH, Schipper RG, de Vos WM, Dekker J. Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes 2010;1:254–268. doi: 10.4161/gmic.1.4.12778. - PubMed
  52. Derrien M, Belzer C, de Vos WM. Akkermansia muciniphila and its role in regulating host functions. Microb Pathog 2017;106:171–181. doi: 10.1016/j.micpath.2016.02.005. P. - PubMed
  53. Wang L, Tang L, Feng Y, Zhao S, Han M, Zhang C, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurised bacterium blunts colitis associated tumourigenesis by modulation of CD8(+) T cells in mice. Gut 2020;69:1988–1997. doi: 10.1136/gutjnl-2019-320105. - PubMed
  54. Fan L, Xu C, Ge Q, Lin Y, Wong CC, Qi Y, et al. A. Muciniphila suppresses colorectal tumorigenesis by inducing TLR2/NLRP3-mediated M1-like TAMs. Cancer Immunol Res 2021;9:1111–1124. doi: 10.1158/2326-6066.CIR-20-1019. - PubMed
  55. Bertrand Routy, Emmanuelle Le Chatelier, Lisa Derosa, Connie P.M. Duong, Maryam Tidjani Alou, Romain Daillère, et al. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science 2018;359:91–97. - PubMed
  56. Schlegel L, Grimont F, Ageron E, Grimont PAD, Bouvet A. Reappraisal of the taxonomy of the Streptococcus bovis/Streptococcus equinus complex and related species: description of Streptococcus gallolyticus subsp. gallolyticus subsp. nov., S. gallolyticus subsp. macedonicus subsp. nov. and S. gallolyticus subsp. pasteurianus subsp. nov. Int J Syst Evol Microbiol 2003;53 (Pt 3):631–645. doi: 10.1099/ijs.0.02361-0. - PubMed
  57. Boleij A, van Gelder MM, Swinkels DW, Tjalsma H. Clinical Importance of Streptococcus gallolyticus infection among colorectal cancer patients: systematic review and meta-analysis. Clin Infect Dis 2011;53:870–878. doi: 10.1093/cid/cir609. - PubMed
  58. Ahmed S Abdulamir, Rand R Hafidh, Bakar FA. The association of Streptococcus bovis/gallolyticus with colorectal tumors: the nature and the underlying mechanisms of its etiological role. J Exp Clin Cancer Res 2011;30:11. doi: 10.1186/1756-9966-30-11. - PubMed
  59. Aymeric L, Donnadieu F, Mulet C, du Merle L, Nigro G, Saffarian A, et al. Colorectal cancer specific conditions promote Streptococcus gallolyticus gut colonization. Proc Natl Acad Sci USA 2018;115:E283–E291. doi: 10.1073/pnas.1715112115. - PubMed
  60. Kumar R, Herold JL, Schady D, Davis J, Kopetz S, Martinez-Moczygemba M, et al. Streptococcus gallolyticus subsp. gallolyticus promotes colorectal tumor development. PLoS Pathog 2017;13:e1006440. doi: 10.1371/journal.ppat.1006440. - PubMed
  61. Li Q, Hu W, Liu WX, Zhao LY, Huang D, Liu XD, et al. Streptococcus thermophilus inhibits colorectal tumorigenesis through secreting beta-galactosidase. Gastroenterology 2021;160:1179–1193. e1114. doi: 10.1053/j.gastro.2020.09.003. - PubMed
  62. Allali I, Boukhatem N, Bouguenouch L, Hardi H, Boudouaya HA, Cadenas MB, et al. Gut microbiome of Moroccan colorectal cancer patients. Med Microbiol Immunol 2018;207:211–225. doi: 10.1007/s00430-018-0542-5. - PubMed
  63. Xie YH, Gao QY, Cai GX, Sun XM, Sun XM, Zou TH, et al. Fecal clostridium symbiosum for noninvasive detection of early and advanced colorectal cancer: test and validation studies. EBioMedicine 2017;25:32–40. doi: 10.1016/j.ebiom.2017.10.005. - PubMed
  64. Tulli L, Marchi S, Petracca R, Shaw HA, Fairweather NF, Scarselli M, et al. CbpA: a novel surface exposed adhesin of Clostridium difficile targeting human collagen. Cell Microbiol 2013;15:1674–1687. doi: 10.1111/cmi.12139. - PubMed
  65. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 2014;11:506–514. doi: 10.1038/nrgastro.2014.66. - PubMed
  66. Tripathy A, Dash J, Kancharla S, Kolli P, Mahajan D, Senapati S, et al. Probiotics: a promising candidate for management of colorectal cancer. Cancers (Basel) 2021;13:3178. doi: 10.3390/cancers13133178. - PubMed
  67. Ding S, Hu C, Fang J, Liu G. The protective role of probiotics against colorectal cancer. Oxid Med Cell Longev 2020;2020:8884583. doi: 10.1155/2020/8884583. - PubMed
  68. Chen D, Jin D, Huang S, Wu J, Xu M, Liu T, et al. Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating WNT signaling and gut microbiota. Cancer Lett 2020;469:456–467. doi: 10.1016/j.canlet.2019.11.019. - PubMed
  69. Chen ZF, Ai LY, Wang JL, Ren LL, Yu YN, Xu J, et al. Probiotics Clostridium butyricum and Bacillus subtilis ameliorate intestinal tumorigenesis. Future Microbiol 2015;10:1433–1445. doi: 10.2217/fmb.15.66. - PubMed
  70. Xing C, Wang M, Ajibade AA, Tan P, Fu C, Chen L, et al. Microbiota regulate innate immune signaling and protective immunity against cancer. Cell Host Microbe 2021;29:959–974. e7. doi: 10.1016/j.chom.2021.03.016. - PubMed
  71. Kim BK, Yoon YS, Ryu Y, Chung MJ. Probiotic-derived p8 protein induce apoptosis via regulation of RNF152 in colorectal cancer cells. Am J Cancer Res 2021;11:746–759. - PubMed
  72. Owens JA, Saeedi BJ, Naudin CR, Hunter-Chang S, Barbian ME, Eboka RU, et al. Lactobacillus rhamnosus GG orchestrates an anti-tumor immune response. Cell Mol Gastroenterol Hepatol 2021;12:1311–1327. doi: 10.1016/j.jcmgh.2021.06.001. - PubMed
  73. Chung Y, Ryu Y, An BC, Yoon YS, Choi O, Kim TY, et al. A synthetic probiotic engineered for colorectal cancer therapy modulates gut microbiota. Microbiome 2021;9:122. doi: 10.1186/s40168-021-01071-4. - PubMed
  74. Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 2017;14:491–502. doi: 10.1038/nrgastro.2017.75. - PubMed
  75. Raman M, Ambalam P, Kondepudi KK, Pithva S, Kothari C, Patel AT, et al. Potential of probiotics, prebiotics and synbiotics for management of colorectal cancer. Gut Microbes 2013;4:181–192. doi: 10.4161/gmic.23919. - PubMed
  76. Liao W, Khan I, Huang G, Chen S, Liu L, Leong WK, et al. Bifidobacterium animalis: the missing link for the cancer-preventive effect of Gynostemma pentaphyllum. Gut Microbes 2021;13:1847629. doi: 10.1080/19490976.2020.1847629. - PubMed
  77. Fei Y, Chen Z, Han S, Zhang S, Zhang T, Lu Y, et al. Role of prebiotics in enhancing the function of next-generation probiotics in gut microbiota. Crit Rev Food Sci Nutr 2021;1–18. doi: 10.1080/10408398.2021.1958744. - PubMed
  78. Aguilar-Toalá JE, Garcia-Varela R, Garcia HS, Mata-Haro V, González-Córdova AF, Vallejo-Cordoba B, et al. Postbiotics: an evolving term within the functional foods field. Trends Food Sci Technol 2018;75:105–114. doi: 10.1016/j.tifs.2018.03.009. - PubMed
  79. Rad AH, Aghebati-Maleki L, Kafil HS, Abbasi A. Molecular mechanisms of postbiotics in colorectal cancer prevention and treatment. Crit Rev Food Sci Nutr 2021;61:1787–1803. doi: 10.1080/10408398.2020.1765310. - PubMed
  80. Wang G, Yu Y, Wang YZ, Wang JJ, Guan R, Sun Y, et al. Role of SCFAs in gut microbiome and glycolysis for colorectal cancer therapy. J Cell Physiol 2019;234:17023–17049. doi: 10.1002/jcp.28436. - PubMed
  81. Wong SH, Zhao L, Zhang X, Nakatsu G, Han J, Xu W, et al. Gavage of fecal samples from patients with colorectal cancer promotes intestinal carcinogenesis in germ-free and conventional mice. Gastroenterology 2017;153:1621–1633. e6. doi: 10.1053/j.gastro.2017.08.022. - PubMed
  82. Min Ho PY, Hu W, Lee YY, Gao C, Tan YZ, Cheen HH, et al. Health-related quality of life of patients with inflammatory bowel disease in Singapore. Intest Res 2019;17:107–118. doi: 10.5217/ir.2018.00099. - PubMed
  83. Parker KD, Maurya AK, Ibrahim H, Rao S, Hove PR, Kumar D, et al. Dietary rice bran-modified human gut microbial consortia confers protection against colon carcinogenesis following fecal transfaunation. Biomedicines 2021;9:144. doi: 10.3390/biomedicines9020144. - PubMed
  84. Yang J, Yu J. The association of diet, gut microbiota and colorectal cancer: what we eat may imply what we get. Protein Cell 2018;9:474–487. doi: 10.1007/s13238-018-0543-6. - PubMed
  85. Gaines S, van Praagh JB, Williamson AJ, Jacobson RA, Hyoju S, Zaborin A, et al. Western diet promotes intestinal colonization by collagenolytic microbes and promotes tumor formation after colorectal surgery. Gastroenterology 2020;158:958–970. e2. doi: 10.1053/j.gastro.2019.10.020. - PubMed
  86. Nguyen LH, Cao Y, Hur J, Mehta RS, Sikavi DR, Wang Y, et al. The sulfur microbial diet is associated with increased risk of early-onset colorectal cancer precursors. Gastroenterology 2021;161:1423–1432. e4. doi: 10.1053/j.gastro.2021.07.008. - PubMed
  87. Weng W, Goel A. Curcumin and colorectal cancer: an update and current perspective on this natural medicine. Semin Cancer Biol 2020. S1044-579X(20)30044-4. doi: 10.1016/j.semcancer.2020.02.011. - PubMed
  88. Zhu LQ, Zhang L, Zhang J, Chang GL, Liu G, Yu DD, et al. Evodiamine inhibits high-fat diet-induced colitis-associated cancer in mice through regulating the gut microbiota. J Integr Med 2021;19:56–65. doi: 10.1016/j.joim.2020.11.001. - PubMed
  89. Yu YN, Yu TC, Zhao HJ, Sun TT, Chen HM, Chen HY, et al. Berberine may rescue Fusobacterium nucleatum-induced colorectal tumorigenesis by modulating the tumor microenvironment. Oncotarget 2015;6:32013–32026. doi: 10.18632/oncotarget.5166. - PubMed
  90. Chen H, Zhang F, Zhang J, Zhang X, Guo Y, Yao Q. A holistic view of berberine inhibiting intestinal carcinogenesis in conventional mice based on microbiome-metabolomics analysis. Front Immunol 2020;11:588079. doi: 10.3389/fimmu.2020.588079. - PubMed
  91. Wang Y, Zhang X, Li J, Zhang Y, Guo Y, Chang Q, et al. Sini decoction ameliorates colorectal cancer and modulates the composition of gut microbiota in mice. Front Pharmacol 2021;12:609992. doi: 10.3389/fphar.2021.609992. - PubMed

Substances

MeSH terms

Publication Types