Display options
Share it on

Metabolomics. 2021 Nov 25;17(12):104. doi: 10.1007/s11306-021-01852-w.

Metabonomics study of the effects of single copy mutant KRAS in the presence or absence of WT allele using human HCT116 isogenic cell lines.

Metabolomics : Official journal of the Metabolomic Society

Dorna Varshavi, Dorsa Varshavi, Nicola McCarthy, Kirill Veselkov, Hector C Keun, Jeremy R Everett

Affiliations

  1. Medway Metabonomics Research Group, University of Greenwich, Chatham Maritime, ME4 4TB, Kent, UK.
  2. Department of Biological Sciences, University of Alberta, 116 Street & 85 Ave, Edmonton, AB, T6G 2R3, Canada.
  3. Horizon Discovery Ltd., Cambridge Research Park, 8100 Beach Dr, Waterbeach, Cambridge, CB25 9TL, UK.
  4. Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK.
  5. Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London, SW7 2AZ, UK.
  6. Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 ONN, UK.
  7. Medway Metabonomics Research Group, University of Greenwich, Chatham Maritime, ME4 4TB, Kent, UK. [email protected].

PMID: 34822010 PMCID: PMC8616861 DOI: 10.1007/s11306-021-01852-w

Abstract

INTRODUCTION: KRAS was one of the earliest human oncogenes to be described and is one of the most commonly mutated genes in different human cancers, including colorectal cancer. Despite KRAS mutants being known driver mutations, KRAS has proved difficult to target therapeutically, necessitating a comprehensive understanding of the molecular mechanisms underlying KRAS-driven cellular transformation.

OBJECTIVES: To investigate the metabolic signatures associated with single copy mutant KRAS in isogenic human colorectal cancer cells and to determine what metabolic pathways are affected.

METHODS: Using NMR-based metabonomics, we compared wildtype (WT)-KRAS and mutant KRAS effects on cancer cell metabolism using metabolic profiling of the parental KRAS

RESULTS: Mutation in the KRAS oncogene leads to a general metabolic remodelling to sustain growth and counter stress, including alterations in the metabolism of amino acids and enhanced glutathione biosynthesis. Additionally, we show that KRAS

CONCLUSIONS: Our study showed the effect of a single point mutation in one KRAS allele and KRAS allele loss in an isogenic genetic background, hence avoiding confounding genetic factors. Metabolic differences among different KRAS mutations might play a role in their different responses to anticancer treatments and hence could be exploited as novel metabolic vulnerabilities to develop more effective therapies against oncogenic KRAS.

© 2021. The Author(s).

Keywords: Cells; Colorectal cancer; HCT116; KRAS; Metabolic profiling; Metabolomics; Metabonomics; Mutations; NMR

References

  1. J Biol Chem. 2013 Jan 25;288(4):2403-13 - PubMed
  2. Br J Cancer Suppl. 1987 Jun;8:96-104 - PubMed
  3. Chem Biol Interact. 1998 Apr 24;111-112:213-24 - PubMed
  4. Nat Genet. 2001 Sep;29(1):25-33 - PubMed
  5. Mol Cell. 2014 Oct 23;56(2):205-218 - PubMed
  6. Eur J Clin Invest. 2015 Jan;45 Suppl 1:37-43 - PubMed
  7. Neoplasia. 2016 Nov;18(11):654-665 - PubMed
  8. Cell Metab. 2006 Mar;3(3):187-97 - PubMed
  9. Nat Rev Cancer. 2016 Oct;16(10):650-62 - PubMed
  10. Pharmacol Ther. 1991;51(2):155-94 - PubMed
  11. Int J Exp Pathol. 2014 Feb;95(1):8-15 - PubMed
  12. Oncotarget. 2016 Jul 19;7(29):46717-46733 - PubMed
  13. Trends Biochem Sci. 2014 Apr;39(4):191-8 - PubMed
  14. Clin Cancer Res. 2009 Jan 15;15(2):431-40 - PubMed
  15. Int J Mol Sci. 2012 Sep 25;13(10):12153-68 - PubMed
  16. Comput Struct Biotechnol J. 2015 Jan 27;13:131-44 - PubMed
  17. Nature. 2013 Jan 24;493(7433):542-6 - PubMed
  18. Cancer Cell. 2005 Jan;7(1):77-85 - PubMed
  19. Metabolomics. 2007 Sep;3(3):211-221 - PubMed
  20. Cancer Res. 1984 Oct;44(10):4224-32 - PubMed
  21. Nature. 2012 Nov 15;491(7424):364-73 - PubMed
  22. Cancer Metab. 2015 Jan 25;3(1):1 - PubMed
  23. Science. 2012 May 25;336(6084):1040-4 - PubMed
  24. Mol Cell Oncol. 2014 Oct 29;1(3):e963452 - PubMed
  25. Nat Med. 1995 Jan;1(1):84-8 - PubMed
  26. Metabolomics. 2020 Apr 16;16(4):51 - PubMed
  27. Cancer Cell. 2015 Jan 12;27(1):57-71 - PubMed
  28. Int J Cancer. 2012 Oct 15;131(8):1810-7 - PubMed
  29. PLoS One. 2012;7(9):e45190 - PubMed
  30. Mol Cell. 2014 Nov 6;56(3):414-424 - PubMed
  31. Anal Bioanal Chem. 2011 Jan;399(3):1127-39 - PubMed
  32. Cancers (Basel). 2010 Mar 26;2(2):274-304 - PubMed
  33. Nature. 2016 Mar 3;531(7592):110-3 - PubMed
  34. Cancer Metab. 2014 Dec 11;2:23 - PubMed
  35. Crit Rev Clin Lab Sci. 2006;43(2):143-81 - PubMed
  36. Front Pharmacol. 2014 Aug 26;5:196 - PubMed
  37. Comput Struct Biotechnol J. 2016 Mar 09;14:135-53 - PubMed
  38. Trends Pharmacol Sci. 2019 Oct;40(10):763-773 - PubMed
  39. Hepatology. 2002 Jan;35(1):74-81 - PubMed
  40. Cell Cycle. 2013 Jul 1;12(13):1987-8 - PubMed
  41. J Med Life. 2014 Oct-Dec;7(4):581-7 - PubMed
  42. J Carcinog. 2013 Jun 18;12:9 - PubMed
  43. Front Mol Biosci. 2018 Apr 09;5:28 - PubMed
  44. Nature. 2013 Apr 4;496(7443):101-5 - PubMed
  45. Nat Commun. 2018 Jan 2;9(1):38 - PubMed
  46. Semin Cell Dev Biol. 2015 Jul;43:22-32 - PubMed
  47. Cell Metab. 2006 Mar;3(3):177-85 - PubMed
  48. Nature. 2011 Aug 18;476(7360):346-50 - PubMed
  49. Science. 2016 Sep 9;353(6304):1161-5 - PubMed
  50. Cell Rep. 2014 May 22;7(4):1248-58 - PubMed
  51. Oncogene. 2013 Aug 22;32(34):4028-33 - PubMed

Publication Types