Display options
Share it on

Biomolecules. 2021 Dec 01;11(12). doi: 10.3390/biom11121805.

Towards the De Novo Design of HIV-1 Protease Inhibitors Based on Natural Products.

Biomolecules

Ana L Chávez-Hernández, K Eurídice Juárez-Mercado, Fernanda I Saldívar-González, José L Medina-Franco

Affiliations

  1. DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico.

PMID: 34944448 PMCID: PMC8698858 DOI: 10.3390/biom11121805

Abstract

Acquired immunodeficiency syndrome (AIDS) caused by the human immunodeficiency virus (HIV) continues to be a public health problem. In 2020, 680,000 people died from HIV-related causes, and 1.5 million people were infected. Antiretrovirals are a way to control HIV infection but not to cure AIDS. As such, effective treatment must be developed to control AIDS. Developing a drug is not an easy task, and there is an enormous amount of work and economic resources invested. For this reason, it is highly convenient to employ computer-aided drug design methods, which can help generate and identify novel molecules. Using the de novo design, novel molecules can be developed using fragments as building blocks. In this work, we develop a virtual focused compound library of HIV-1 viral protease inhibitors from natural product fragments. Natural products are characterized by a large diversity of functional groups, many sp

Keywords: HIV-1 inhibitors; artificial intelligence; de novo design; fragment-based drug discovery; pseudo natural products

References

  1. ACS Omega. 2020 Jun 25;5(26):16076-16084 - PubMed
  2. Biochem Soc Trans. 2020 Feb 28;48(1):271-280 - PubMed
  3. J Med Chem. 2015 May 14;58(9):4066-72 - PubMed
  4. Front Public Health. 2017 Mar 07;5:32 - PubMed
  5. J Med Chem. 2019 Mar 14;62(5):2245-2255 - PubMed
  6. Mol Inform. 2020 Nov;39(11):e2000050 - PubMed
  7. Adv Drug Deliv Rev. 2001 Mar 1;46(1-3):3-26 - PubMed
  8. J Comput Aided Mol Des. 2020 Jul;34(7):783-803 - PubMed
  9. Methods Mol Biol. 2011;672:299-323 - PubMed
  10. HIV AIDS (Auckl). 2015 Apr 08;7:95-104 - PubMed
  11. Nat Rev Drug Discov. 2016 Sep;15(9):605-619 - PubMed
  12. Comput Biol Chem. 2020 Oct;88:107319 - PubMed
  13. Nat Chem. 2020 Mar;12(3):227-235 - PubMed
  14. J Chem Inf Comput Sci. 2002 Nov-Dec;42(6):1273-80 - PubMed
  15. J Med Chem. 2020 Sep 24;63(18):10091-10108 - PubMed
  16. J Cheminform. 2020 Apr 3;12(1):20 - PubMed
  17. J Cheminform. 2020 Feb 12;12(1):12 - PubMed
  18. Int J Mol Sci. 2021 Feb 07;22(4): - PubMed
  19. J Med Chem. 2002 Jun 6;45(12):2615-23 - PubMed
  20. Nat Rev Mol Cell Biol. 2022 Jan;23(1):40-55 - PubMed
  21. J Med Chem. 2010 Apr 22;53(8):3133-41 - PubMed
  22. ACS Omega. 2021 Aug 23;6(35):22478-22486 - PubMed
  23. Eur J Med Chem. 2021 Apr 5;215:113287 - PubMed
  24. Curr Opin Chem Biol. 2008 Jun;12(3):306-17 - PubMed
  25. Biomolecules. 2020 Nov 06;10(11): - PubMed
  26. Sci Rep. 2017 Mar 03;7:42717 - PubMed
  27. Bioorg Med Chem. 2020 Jun 15;28(12):115539 - PubMed
  28. F1000Res. 2019 Dec 10;8: - PubMed
  29. Curr Med Sci. 2018 Jun;38(3):387-397 - PubMed
  30. J Cheminform. 2020 Oct 27;12(1):64 - PubMed
  31. Angew Chem Int Ed Engl. 2019 Aug 5;58(32):10792-10803 - PubMed
  32. J Chem Inf Model. 2010 May 24;50(5):742-54 - PubMed
  33. J Cheminform. 2009 Jun 10;1(1):8 - PubMed
  34. Methods Mol Biol. 2021;2190:139-165 - PubMed
  35. Nat Prod Rep. 2016 Mar;33(3):372-81 - PubMed
  36. Antivir Chem Chemother. 2008;19(3):107-13 - PubMed
  37. Drug Discov Today. 2021 Nov;26(11):2707-2715 - PubMed
  38. AAPS J. 2016 Sep;18(5):1095-1100 - PubMed
  39. Nucleic Acids Res. 2018 Jan 4;46(D1):D1074-D1082 - PubMed
  40. J Chem Inf Comput Sci. 1998 May-Jun;38(3):511-22 - PubMed
  41. Future Med Chem. 2021 Mar;13(6):575-585 - PubMed
  42. Nat Rev Drug Discov. 2021 Mar;20(3):200-216 - PubMed

Publication Types

Grant support