Display options
Share it on

Int J Mol Sci. 2021 Dec 17;22(24). doi: 10.3390/ijms222413549.

The Proliferation of Pre-Pubertal Porcine Spermatogonia in Stirred Suspension Bioreactors Is Partially Mediated by the Wnt/β-Catenin Pathway.

International journal of molecular sciences

Sadman Sakib, Anna Voigt, Nathalia de Lima E Martins Lara, Lin Su, Mark Ungrin, Derrick Rancourt, Ina Dobrinski

Affiliations

  1. Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
  2. Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada.
  3. Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB T2N 1N4, Canada.
  4. Department of Oncology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N2, Canada.

PMID: 34948348 PMCID: PMC8708394 DOI: 10.3390/ijms222413549

Abstract

Male survivors of childhood cancer are at risk of suffering from infertility in adulthood because of gonadotoxic chemotherapies. For adult men, sperm collection and preservation are routine procedures prior to treatment; however, this is not an option for pre-pubertal children. From young boys, a small biopsy may be taken before chemotherapy, and spermatogonia may be propagated in vitro for future transplantation to restore fertility. A robust system that allows for scalable expansion of spermatogonia within a controlled environment is therefore required. Stirred suspension culture has been applied to different types of stem cells but has so far not been explored for spermatogonia. Here, we report that pre-pubertal porcine spermatogonia proliferate more in bioreactor suspension culture, compared with static culture. Interestingly, oxygen tension provides an avenue to modulate spermatogonia status, with culture under 10% oxygen retaining a more undifferentiated state and reducing proliferation in comparison with the conventional approach of culturing under ambient oxygen levels. Spermatogonia grown in bioreactors upregulate the Wnt/ β-catenin pathway, which, along with enhanced gas and nutrient exchange observed in bioreactor culture, may synergistically account for higher spermatogonia proliferation. Therefore, stirred suspension bioreactors provide novel platforms to culture spermatogonia in a scalable manner and with minimal handling.

Keywords: bioreactor; culture; germ cell; spermatogonia; stirred suspension bioreactor

References

  1. Andrologia. 2014;46(9):1013-21 - PubMed
  2. Curr Opin Chem Biol. 2007 Aug;11(4):394-8 - PubMed
  3. Dev Cell. 2020 Feb 24;52(4):399-411 - PubMed
  4. Tissue Eng Part A. 2010 Feb;16(2):405-21 - PubMed
  5. Lancet Oncol. 2021 Feb;22(2):e57-e67 - PubMed
  6. Int J Mol Sci. 2021 Feb 18;22(4): - PubMed
  7. Biol Reprod. 2014 Jan 09;90(1):3 - PubMed
  8. Front Bioeng Biotechnol. 2020 Nov 26;8:599674 - PubMed
  9. Stem Cells. 2021 Sep;39(9):1166-1177 - PubMed
  10. Trends Genet. 1993 Sep;9(9):317-21 - PubMed
  11. Tsitologiia. 2009;51(3):212-8 - PubMed
  12. Stem Cells Dev. 2019 Sep 15;28(18):1264-1275 - PubMed
  13. Ann N Y Acad Sci. 2005 May;1049:161-71 - PubMed
  14. Cell Stem Cell. 2009 Nov 6;5(5):527-39 - PubMed
  15. J Clin Oncol. 2010 Jan 10;28(2):332-9 - PubMed
  16. Biol Reprod. 2003 Aug;69(2):612-6 - PubMed
  17. PLoS One. 2019 Apr 10;14(4):e0214610 - PubMed
  18. Proc Natl Acad Sci U S A. 2004 Nov 23;101(47):16489-94 - PubMed
  19. Growth Factors. 2015;33(3):181-91 - PubMed
  20. Brain Res Dev Brain Res. 2002 Mar 31;134(1-2):103-13 - PubMed
  21. J Pharmacol Toxicol Methods. 2010 Nov-Dec;62(3):196-220 - PubMed
  22. Biol Reprod. 2016 Jul;95(1):14 - PubMed
  23. Biol Reprod. 2003 Jan;68(1):272-81 - PubMed
  24. J Tissue Eng Regen Med. 2014 Apr;8(4):268-78 - PubMed
  25. Nature. 2002 Aug 15;418(6899):778-81 - PubMed
  26. Nature. 2015 Jul 2;523(7558):92-5 - PubMed
  27. Anim Reprod Sci. 2016 Mar;166:109-15 - PubMed
  28. Clin Hemorheol Microcirc. 2002;26(2):117-23 - PubMed
  29. Biol Reprod. 2007 Oct;77(4):723-33 - PubMed
  30. Stem Cells Dev. 2010 Jul;19(7):989-98 - PubMed
  31. Stem Cells. 2013 Dec;31(12):2779-88 - PubMed
  32. Regen Med. 2012 Sep;7(5):675-83 - PubMed
  33. Lancet. 2014 Apr 5;383(9924):1250-63 - PubMed
  34. Genes Dev. 2016 Dec 1;30(23):2637-2648 - PubMed
  35. EMBO J. 2019 Jan 3;38(1): - PubMed
  36. Proc Natl Acad Sci U S A. 2016 Mar 15;113(11):E1489-97 - PubMed
  37. Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):11312-7 - PubMed
  38. Proc Natl Acad Sci U S A. 2017 Aug 1;114(31):8289-8294 - PubMed
  39. J Vis Exp. 2019 Oct 3;(152): - PubMed
  40. Stem Cell Reports. 2017 May 9;8(5):1430-1441 - PubMed
  41. Tissue Eng. 2006 Nov;12(11):3233-45 - PubMed
  42. J Cell Sci. 2007 Aug 1;120(Pt 15):2672-82 - PubMed
  43. Arab J Urol. 2017 Dec 27;16(1):171-180 - PubMed
  44. Mol Reprod Dev. 2006 Dec;73(12):1531-40 - PubMed
  45. Nat Methods. 2012 Apr 08;9(5):465-6 - PubMed
  46. Exp Cell Res. 1977 Oct 1;109(1):111-7 - PubMed
  47. Sichuan Da Xue Xue Bao Yi Xue Ban. 2014 Nov;45(6):913-8 - PubMed
  48. Cell Rep. 2018 Nov 6;25(6):1650-1667.e8 - PubMed
  49. J Am Soc Nephrol. 2014 Jun;25(6):1211-25 - PubMed
  50. PLoS One. 2018 Oct 16;13(10):e0204269 - PubMed
  51. Cancer Epidemiol Biomarkers Prev. 2015 Apr;24(4):653-63 - PubMed
  52. Calcif Tissue Int. 2004 Nov;75(5):396-404 - PubMed
  53. Elife. 2020 Sep 02;9: - PubMed
  54. Biol Reprod. 2007 Nov;77(5):897-904 - PubMed
  55. Biol Reprod. 2021 Sep 14;105(3):616-624 - PubMed
  56. FASEB J. 2021 May;35(5):e21513 - PubMed
  57. Hypoxia (Auckl). 2015 Sep 18;3:35-43 - PubMed
  58. Reproduction. 2015 Sep;150(3):R77-91 - PubMed
  59. J Cell Biol. 2010 Jun 28;189(7):1107-15 - PubMed
  60. Biol Reprod. 2000 Dec;63(6):1629-36 - PubMed
  61. Nat Methods. 2012 Mar 25;9(5):509-16 - PubMed
  62. Dev Biol. 2017 Jun 1;426(1):17-27 - PubMed
  63. Genes Dev. 2016 Jun 15;30(12):1454-69 - PubMed
  64. Free Radic Biol Med. 2017 Dec;113:311-322 - PubMed

Publication Types

Grant support