Display options
Share it on

Cell Res. 2021 Aug;31(8):904-918. doi: 10.1038/s41422-021-00479-9. Epub 2021 Mar 10.

Single-cell transcriptomic analysis of somatosensory neurons uncovers temporal development of neuropathic pain.

Cell research

Kaikai Wang, Sashuang Wang, Yan Chen, Dan Wu, Xinyu Hu, Yingjin Lu, Liping Wang, Lan Bao, Changlin Li, Xu Zhang

Affiliations

  1. Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
  2. School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
  3. University of Chinese Academy of Sciences, Beijing, 100049, China.
  4. Research Unit of Pain, Chinese Academy of Medical Sciences, Institute of Brain-Intelligence Science and Technology, Zhangjiang Lab, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 200031, China.
  5. Shanghai Clinical Research Center, Chinese Academy of Sciences, Xuhui Central Hospital, Shanghai, 200031, China.
  6. Shenzhen Key Lab of Neuropsychiatric Modulation, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
  7. State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China.
  8. Research Unit of Pain, Chinese Academy of Medical Sciences, Institute of Brain-Intelligence Science and Technology, Zhangjiang Lab, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 200031, China. [email protected].
  9. Shanghai Clinical Research Center, Chinese Academy of Sciences, Xuhui Central Hospital, Shanghai, 200031, China. [email protected].
  10. Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China. [email protected].
  11. School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China. [email protected].
  12. University of Chinese Academy of Sciences, Beijing, 100049, China. [email protected].
  13. Research Unit of Pain, Chinese Academy of Medical Sciences, Institute of Brain-Intelligence Science and Technology, Zhangjiang Lab, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 200031, China. [email protected].

PMID: 33692491 PMCID: PMC8324866 DOI: 10.1038/s41422-021-00479-9

Abstract

Peripheral nerve injury could lead to chronic neuropathic pain. Understanding transcriptional changes induced by nerve injury could provide fundamental insights into the complex pathogenesis of neuropathic pain. Gene expression profiles of dorsal root ganglia (DRG) in neuropathic pain condition have been studied. However, little is known about transcriptomic changes in individual DRG neurons after peripheral nerve injury. Here we performed single-cell RNA sequencing on dissociated mouse DRG cells after spared nerve injury (SNI). In addition to DRG neuron types that are found under physiological conditions, we identified three SNI-induced neuronal clusters (SNIICs) characterized by the expression of Atf3/Gfra3/Gal (SNIIC1), Atf3/Mrgprd (SNIIC2) and Atf3/S100b/Gal (SNIIC3). These SNIICs originated from Cldn9

© 2021. The Author(s), under exclusive licence to Center for Excellence in Molecular Cell Science, CAS.

References

  1. Nat Protoc. 2016 Sep;11(9):1650-67 - PubMed
  2. Nat Protoc. 2014 Jan;9(1):171-81 - PubMed
  3. J Neurosci. 2003 Oct 1;23(26):8854-8 - PubMed
  4. Nat Neurosci. 2000 Sep;3(9):867-72 - PubMed
  5. Neuron. 2011 Sep 22;71(6):995-1013 - PubMed
  6. BMC Neurosci. 2002 Oct 25;3:16 - PubMed
  7. Physiol Rev. 2019 Apr 1;99(2):1079-1151 - PubMed
  8. Bioinformatics. 2017 Apr 15;33(8):1179-1186 - PubMed
  9. Neuron. 2019 Nov 20;104(4):637-653 - PubMed
  10. Bioinformatics. 2012 Aug 15;28(16):2184-5 - PubMed
  11. Pain. 2000 Oct;88(1):15-22 - PubMed
  12. Pain. 2001 Apr;91(3):351-360 - PubMed
  13. Pharmacol Rev. 2015;67(1):118-75 - PubMed
  14. J Neurosci. 2002 Sep 15;22(18):8139-47 - PubMed
  15. Nature. 2007 Jul 12;448(7150):204-8 - PubMed
  16. Cell. 2018 Aug 9;174(4):999-1014.e22 - PubMed
  17. Mol Cell. 2017 Feb 16;65(4):631-643.e4 - PubMed
  18. Annu Rev Neurosci. 2009;32:1-32 - PubMed
  19. Ann Neurol. 2012 Jan;71(1):26-39 - PubMed
  20. Nat Commun. 2018 Jul 10;9(1):2667 - PubMed
  21. Mol Cell Neurosci. 2000 Feb;15(2):170-82 - PubMed
  22. Mol Pain. 2014 Feb 13;10:12 - PubMed
  23. Glia. 2013 Jan;61(1):55-61 - PubMed
  24. Nat Rev Neurosci. 2017 Sep;18(9):530-546 - PubMed
  25. Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):8360-5 - PubMed
  26. Nat Methods. 2017 Mar;14(3):309-315 - PubMed
  27. Exp Neurol. 2014 Jan;251:115-26 - PubMed
  28. Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19444-9 - PubMed
  29. Nat Methods. 2017 Oct;14(10):979-982 - PubMed
  30. Neuron. 2016 Mar 2;89(5):956-70 - PubMed
  31. Bioinformatics. 2018 Sep 1;34(17):i884-i890 - PubMed
  32. Nature. 2020 Jan;577(7790):392-398 - PubMed
  33. Neuron. 2017 Oct 11;96(2):313-329.e6 - PubMed
  34. Cell Rep. 2019 Nov 19;29(8):2384-2397.e5 - PubMed
  35. Pain. 2016 Feb;157 Suppl 1:S7-S14 - PubMed
  36. Nature. 1980 Apr 10;284(5756):515-21 - PubMed
  37. Pain. 2016 Apr;157(4):827-839 - PubMed
  38. Genome Biol. 2019 Mar 22;20(1):63 - PubMed
  39. J Biol Chem. 2018 Jun 22;293(25):9685-9695 - PubMed
  40. Nat Methods. 2017 Nov;14(11):1083-1086 - PubMed
  41. Pain. 2000 Aug;87(2):149-158 - PubMed
  42. J Control Release. 2018 Jan 10;269:24-35 - PubMed
  43. Cell. 2009 Oct 16;139(2):267-84 - PubMed
  44. Neuron. 2017 Feb 22;93(4):806-821.e9 - PubMed
  45. Annu Rev Immunol. 2016 May 20;34:421-47 - PubMed
  46. Nature. 1997 Oct 23;389(6653):816-24 - PubMed
  47. Trends Immunol. 2005 Oct;26(10):529-34 - PubMed
  48. PLoS One. 2016 Apr 12;11(4):e0153375 - PubMed
  49. Genome Res. 2003 Nov;13(11):2498-504 - PubMed
  50. Physiol Rev. 2011 Apr;91(2):461-553 - PubMed
  51. Nat Biotechnol. 2018 Jun;36(5):411-420 - PubMed
  52. Cell Rep. 2018 Feb 27;22(9):2307-2321 - PubMed
  53. Cell Rep. 2013 Oct 31;5(2):378-88 - PubMed
  54. Neuron. 2020 Oct 14;108(1):128-144.e9 - PubMed
  55. Elife. 2017 Oct 12;6: - PubMed
  56. Nature. 2014 May 15;509(7500):325-30 - PubMed
  57. Ann N Y Acad Sci. 2009 Apr;1160:226-35 - PubMed
  58. Nat Biotechnol. 2014 Apr;32(4):381-386 - PubMed
  59. Annu Rev Immunol. 1997;15:797-819 - PubMed
  60. Nat Immunol. 2012 Jun 24;13(8):753-60 - PubMed
  61. Nat Protoc. 2020 Jul;15(7):2247-2276 - PubMed
  62. Brain. 2014 Jun;137(Pt 6):1627-42 - PubMed
  63. Cell. 2019 Jun 13;177(7):1888-1902.e21 - PubMed
  64. Elife. 2019 Oct 08;8: - PubMed
  65. Nat Methods. 2015 Apr;12(4):357-60 - PubMed
  66. J Clin Invest. 2011 Nov;121(11):4332-47 - PubMed
  67. Nat Neurosci. 2015 Jan;18(1):145-53 - PubMed
  68. Glia. 2002 Mar 15;37(4):374-8 - PubMed
  69. Neuroscientist. 2009 Oct;15(5):450-63 - PubMed
  70. Nat Commun. 2019 Apr 3;10(1):1523 - PubMed
  71. Neuroscience. 1998 Jan;82(1):223-40 - PubMed
  72. Nat Neurosci. 2016 Jan;19(1):94-101 - PubMed
  73. Nat Neurosci. 2019 Nov;22(11):1913-1924 - PubMed
  74. Cold Spring Harb Perspect Biol. 2018 Feb 1;10(2): - PubMed
  75. Science. 2016 Nov 4;354(6312):572-577 - PubMed
  76. Neuron. 2016 Sep 7;91(5):1085-1096 - PubMed
  77. Nat Rev Dis Primers. 2017 Feb 16;3:17002 - PubMed
  78. Nat Rev Neurosci. 2013 Jan;14(1):49-62 - PubMed
  79. Cell Res. 2016 Jan;26(1):83-102 - PubMed
  80. Cell. 2018 Feb 8;172(4):650-665 - PubMed
  81. J Neurosci. 2020 Jan 8;40(2):297-310 - PubMed
  82. Nat Biotechnol. 2015 May;33(5):495-502 - PubMed

Publication Types

Grant support