Display options
Share it on

Stem Cell Reports. 2021 Nov 09;16(11):2752-2767. doi: 10.1016/j.stemcr.2021.09.009. Epub 2021 Oct 14.

Defective autophagy and increased apoptosis contribute toward the pathogenesis of FKRP-associated muscular dystrophies.

Stem cell reports

Carolina Ortiz-Cordero, Claudia Bincoletto, Neha R Dhoke, Sridhar Selvaraj, Alessandro Magli, Haowen Zhou, Do-Hyung Kim, Anne G Bang, Rita C R Perlingeiro

Affiliations

  1. Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN 55455, USA; Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA.
  2. Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN 55455, USA; Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
  3. Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN 55455, USA.
  4. Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
  5. Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.
  6. Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN 55455, USA; Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA. Electronic address: [email protected].

PMID: 34653404 PMCID: PMC8581053 DOI: 10.1016/j.stemcr.2021.09.009

Abstract

Fukutin-related protein (FKRP) is a glycosyltransferase involved in glycosylation of alpha-dystroglycan (α-DG). Mutations in FKRP are associated with muscular dystrophies (MD) ranging from limb-girdle LGMDR9 to Walker-Warburg Syndrome (WWS), a severe type of congenital MD. Although hypoglycosylation of α-DG is the main hallmark of this group of diseases, a full understanding of the underlying pathophysiology is still missing. Here, we investigated molecular mechanisms impaired by FKRP mutations in pluripotent stem (PS) cell-derived myotubes. FKRP-deficient myotubes show transcriptome alterations in genes involved in extracellular matrix receptor interactions, calcium signaling, PI3K-Akt pathway, and lysosomal function. Accordingly, using a panel of patient-specific LGMDR9 and WWS induced PS cell-derived myotubes, we found a significant reduction in the autophagy-lysosome pathway for both disease phenotypes. In addition, we show that WWS myotubes display decreased ERK1/2 activity and increased apoptosis, which were restored in gene edited myotubes. Our results suggest the autophagy-lysosome pathway and apoptosis may contribute to the FKRP-associated MD pathogenesis.

Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.

Keywords: dystroglycanopathies; iPS cells; in vitro modeling; skeletal muscle

References

  1. Am J Physiol Cell Physiol. 2019 Jul 1;317(1):C111-C130 - PubMed
  2. J Med Genet. 2004 May;41(5):e61 - PubMed
  3. Nat Rev Mol Cell Biol. 2014 Feb;15(2):81-94 - PubMed
  4. Biosci Rep. 2015 Apr 22;35(3): - PubMed
  5. Mol Biol Cell. 2007 Nov;18(11):4493-507 - PubMed
  6. BMC Bioinformatics. 2018 Dec 19;19(1):534 - PubMed
  7. J Cell Sci. 2004 Jun 1;117(Pt 13):2805-12 - PubMed
  8. Hum Mutat. 2019 Oct;40(10):1874-1885 - PubMed
  9. Cell Physiol Biochem. 2018;49(3):971-984 - PubMed
  10. J Cell Sci. 2006 Jan 15;119(Pt 2):199-207 - PubMed
  11. Hum Mol Genet. 2011 May 1;20(9):1763-75 - PubMed
  12. Am J Hum Genet. 2001 Dec;69(6):1198-209 - PubMed
  13. Cell Death Dis. 2021 Mar 15;12(3):278 - PubMed
  14. J Cell Sci. 2013 Dec 1;126(Pt 23):5325-33 - PubMed
  15. Virchows Arch. 2007 Dec;451(6):1047-55 - PubMed
  16. J Cell Physiol. 2009 May;219(2):402-14 - PubMed
  17. Cell Rep. 2021 Jul 13;36(2):109360 - PubMed
  18. Hum Mol Genet. 2010 Oct 15;19(20):3995-4006 - PubMed
  19. Cell. 2008 Jan 11;132(1):27-42 - PubMed
  20. Cell Commun Signal. 2010 Feb 17;8:3 - PubMed
  21. Cell Adhes Commun. 1998 Sep;5(6):475-89 - PubMed
  22. Neuromuscul Disord. 2017 Jul;27(7):619-626 - PubMed
  23. Brain. 2006 Apr;129(Pt 4):996-1013 - PubMed
  24. Trends Cell Biol. 2021 Mar;31(3):197-210 - PubMed
  25. Elife. 2016 Apr 29;5: - PubMed
  26. Semin Pediatr Neurol. 2005 Sep;12(3):152-8 - PubMed
  27. J Cell Biol. 2014 Oct 13;207(1):139-58 - PubMed
  28. IUBMB Life. 2006 Nov;58(11):621-31 - PubMed
  29. J Enzyme Inhib Med Chem. 2017 Dec;32(1):893-907 - PubMed
  30. Nucleic Acids Res. 2016 Jul 8;44(W1):W147-53 - PubMed
  31. Muscle Nerve. 2002 Nov;26(5):644-53 - PubMed
  32. Elife. 2019 Nov 11;8: - PubMed
  33. Dis Model Mech. 2020 Jun 26;13(6): - PubMed
  34. Cell. 1994 Jun 3;77(5):663-74 - PubMed
  35. Neuropathol Appl Neurobiol. 2021 Jun;47(4):519-531 - PubMed
  36. Elife. 2021 Jan 29;10: - PubMed
  37. Cell Stem Cell. 2012 May 4;10(5):610-9 - PubMed
  38. Ann N Y Acad Sci. 2020 May;1467(1):3-20 - PubMed
  39. Mol Ther. 2004 Nov;10(5):844-54 - PubMed
  40. Elife. 2014 Oct 03;3: - PubMed
  41. J Biol Chem. 2016 Nov 18;291(47):24618-24627 - PubMed
  42. Nucleic Acids Res. 2009 Jan;37(1):1-13 - PubMed
  43. Elife. 2014 Oct 03;3: - PubMed
  44. Science. 2012 Jan 6;335(6064):93-6 - PubMed
  45. Hum Mol Genet. 2001 Dec 1;10(25):2851-9 - PubMed
  46. Neurol Genet. 2019 Mar 01;5(2):e315 - PubMed
  47. Mol Cell Biol. 2014 Jan;34(1):96-109 - PubMed
  48. Nature. 1992 Feb 20;355(6362):696-702 - PubMed
  49. Cell Death Dis. 2012 Nov 15;3:e418 - PubMed
  50. Brain Pathol. 2009 Oct;19(4):596-611 - PubMed
  51. Nat Commun. 2021 May 19;12(1):2951 - PubMed
  52. Neuromuscul Disord. 2016 Oct;26(10):717-724 - PubMed
  53. Nat Rev Mol Cell Biol. 2020 Oct;21(10):607-632 - PubMed
  54. J Cell Biol. 1993 Aug;122(4):809-23 - PubMed
  55. Nat Commun. 2016 May 19;7:11534 - PubMed
  56. Nat Med. 2010 Nov;16(11):1313-20 - PubMed
  57. Cell Rep. 2016 Mar 8;14(9):2209-2223 - PubMed

Publication Types

Grant support