Display options
Share it on

Mol Oncol. 2021 May;15(5):1566-1583. doi: 10.1002/1878-0261.12934. Epub 2021 Mar 14.

The miR-19b-3p-MAP2K3-STAT3 feedback loop regulates cell proliferation and invasion in esophageal squamous cell carcinoma.

Molecular oncology

Ying Zhang, Weiqing Lu, Yelong Chen, Youbin Lin, Xia Yang, Hu Wang, Zhaoyong Liu

Affiliations

  1. Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China.
  2. Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
  3. Department of Orthopaedics, First Affiliated Hospital of Shantou University Medical College, Shantou, China.

PMID: 33660414 PMCID: PMC8096789 DOI: 10.1002/1878-0261.12934

Abstract

Esophageal squamous cell carcinoma (ESCC) is one of the most refractory malignancies worldwide. Mitogen-activated protein kinase 3 (MAP2K3) has a contradictory role in tumor progression, and the function and expression patterns of MAP2K3 in ESCC remain to be determined. We found that MAP2K3 expression to be downregulated in ESCC, and MAP2K3 downregulation correlated with clinically poor survival. MAP2K3 inhibited ESCC cell proliferation and invasion in vitro and in vivo. MAP2K3 suppressed STAT3 expression and activation. Mechanistically, MAPSK3 interacted with MDM2 to promote STAT3 degradation via the ubiquitin-proteasome pathway. Furthermore, exosomal miR-19b-3p derived from the plasma of patients with ESCC could suppress MAP2K3 expression to promote ESCC tumorigenesis. STAT3 was found to bind to the MIR19B promoter and increased the expression of miR-19b-3p in ESCC cells. In summary, our results demonstrated that the miR-19b-3p-MAP2K3-STAT3 feedback loop regulates ESCC tumorigenesis and elucidates the potential of therapeutically targeting this pathway in ESCC.

© 2021 The Authors. published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

Keywords: MAP2K3; MDM2; STAT3; miR-19b-3p

References

  1. Cell Death Differ. 2011 Dec;18(12):1865-75 - PubMed
  2. Proteomics Clin Appl. 2010 Nov;4(10-11):816-28 - PubMed
  3. Mol Cancer Res. 2015 Jul;13(7):1095-1105 - PubMed
  4. J Exp Clin Cancer Res. 2017 Sep 22;36(1):131 - PubMed
  5. Aging (Albany NY). 2016 Jan;8(1):1-2 - PubMed
  6. Cancers (Basel). 2020 Jul 09;12(7): - PubMed
  7. ACS Chem Biol. 2016 Feb 19;11(2):308-18 - PubMed
  8. Cancer Res. 2014 Jan 1;74(1):162-72 - PubMed
  9. Oncogene. 1999 Mar 18;18(11):1935-44 - PubMed
  10. Cell Death Dis. 2015 Jan 29;6:e1621 - PubMed
  11. Cancer Lett. 2019 Feb 1;442:126-136 - PubMed
  12. J Exp Clin Cancer Res. 2018 Dec 5;37(1):303 - PubMed
  13. Cancer Lett. 2020 Oct 1;489:87-99 - PubMed
  14. Eur Rev Med Pharmacol Sci. 2020 Jun;24(11):6097-6110 - PubMed
  15. Mol Med Rep. 2016 Jan;13(1):243-8 - PubMed
  16. Lancet. 2018 Sep 15;392(10151):971-984 - PubMed
  17. Pharmacol Ther. 2016 Jun;162:86-97 - PubMed
  18. Oncotarget. 2017 May 30;8(22):35902-35918 - PubMed
  19. Phytother Res. 2014 Oct;28(10):1553-60 - PubMed
  20. Science. 2004 Jun 4;304(5676):1497-500 - PubMed
  21. J Cancer. 2016 Feb 05;7(5):512-5 - PubMed
  22. Cell Death Dis. 2017 Oct 5;8(10):e3077 - PubMed
  23. Nat Genet. 2014 May;46(5):467-73 - PubMed
  24. Cell Death Dis. 2019 Nov 6;10(11):842 - PubMed
  25. Mol Cancer. 2018 Oct 11;17(1):147 - PubMed
  26. APMIS. 2018 Apr;126(4):303-308 - PubMed
  27. Int J Oncol. 2019 Aug;55(2):391-404 - PubMed
  28. Cell Death Dis. 2019 Feb 15;10(3):149 - PubMed
  29. Int J Cancer. 2016 Jun 1;138(11):2570-8 - PubMed

Publication Types