Display options
Share it on

Epigenetics. 2021 Jun-Jul;16(7):705-717. doi: 10.1080/15592294.2020.1819663. Epub 2020 Sep 20.

Global epigenetic alterations of mesenchymal stem cells in obesity: the role of vitamin C reprogramming.

Epigenetics

Mohsen Afarideh, Roman Thaler, Farzaneh Khani, Hui Tang, Kyra L Jordan, Sabena M Conley, Ishran M Saadiq, Yasin Obeidat, Aditya S Pawar, Alfonso Eirin, Xiang-Yang Zhu, Amir Lerman, Andre J van Wijnen, Lilach O Lerman

Affiliations

  1. Division of Nephrology and Hypertension, Mayo Clinic Rochester, MN, USA.
  2. Department of Orthopedic Surgery, and Department of Biochemistry, and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
  3. Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA.

PMID: 32893712 PMCID: PMC8216191 DOI: 10.1080/15592294.2020.1819663

Abstract

Obesity promotes dysfunction and impairs the reparative capacity of mesenchymal stem/stromal cells (MSCs), and alters their transcription, protein content, and paracrine function. Whether these adverse effects are mediated by chromatin-modifying epigenetic changes remains unclear. We tested the hypothesis that obesity imposes global DNA hydroxymethylation and histone tri-methylation alterations in obese swine abdominal adipose tissue-derived MSCs compared to lean pig MSCs. MSCs from female lean (n = 7) and high-fat-diet fed obese (n = 7) domestic pigs were assessed using global epigenetic assays, before and after in-vitro co-incubation with the epigenetic modulator vitamin-C (VIT-C) (50 μg/ml). Dot blotting was used to measure across the whole genome 5-hydroxyemthycytosine (5hmC) residues, and Western blotting to quantify in genomic histone-3 protein tri-methylated lysine-4 (H3K4me3), lysine-9 (H3K9me3), and lysine-27 (H3K27me3) residues. MSC migration and proliferation were studied in-vitro. Obese MSCs displayed reduced global 5hmC and H3K4m3 levels, but comparable H3K9me3 and H3K27me3, compared to lean MSCs. Global 5hmC, H3K4me3, and HK9me3 marks correlated with MSC migration and reduced proliferation, as well as clinical and metabolic characteristics of obesity. Co-incubation of obese MSCs with VIT-C enhanced 5hmC marks, and reduced their global levels of H3K9me3 and H3K27me3. Contrarily, VIT-C did not affect 5hmC, and decreased H3K4me3 in lean MSCs. Obesity induces global genomic epigenetic alterations in swine MSCs, involving primarily genomic transcriptional repression, which are associated with MSC function and clinical features of obesity. Some of these alterations might be reversible using the epigenetic modulator VIT-C, suggesting epigenetic modifications as therapeutic targets in obesity.

Keywords: DNA hydroxymethylation; Epigenetics; histone tri-methylation; obesity; vitamin C

References

  1. Stem Cells Transl Med. 2016 Jul;5(7):893-900 - PubMed
  2. Database (Oxford). 2015 Jul 07;2015:bav067 - PubMed
  3. Stem Cell Res Ther. 2016 Sep 09;7(1):128 - PubMed
  4. J Biol Chem. 2018 Aug 17;293(33):12894-12907 - PubMed
  5. Stem Cells Dev. 2017 Jun 1;26(11):828-842 - PubMed
  6. N Engl J Med. 2018 Apr 05;378(14):1323-1334 - PubMed
  7. J Nutr Biochem. 2018 Apr;54:1-10 - PubMed
  8. J Med Oncol Ther. 2016;1(2):34-40 - PubMed
  9. Mol Nutr Food Res. 2019 Feb;63(4):e1800970 - PubMed
  10. Clin Epigenetics. 2018 Apr 10;10:49 - PubMed
  11. BMC Genomics. 2013 Sep 16;14:625 - PubMed
  12. Exp Mol Med. 2015 May 01;47:e161 - PubMed
  13. Nature. 2013 Aug 22;500(7463):472-476 - PubMed
  14. J Biol Chem. 2016 Mar 25;291(13):6754-71 - PubMed
  15. Adipocyte. 2018;7(2):137-142 - PubMed
  16. Birth Defects Res. 2019 Oct 15;111(17):1259-1269 - PubMed
  17. Sci Rep. 2017 Jul 26;7(1):6619 - PubMed
  18. Toxicology. 2018 Dec 1;410:182-192 - PubMed
  19. Gene. 2018 Feb 20;644:101-106 - PubMed
  20. Stem Cell Res Ther. 2015 Jan 19;6:7 - PubMed
  21. J Cell Physiol. 2018 Aug;233(8):5926-5936 - PubMed
  22. Epigenetics. 2020 Jan - Feb;15(1-2):61-71 - PubMed
  23. Epigenetics. 2019 May;14(5):421-444 - PubMed
  24. Diabetol Metab Syndr. 2018 Jul 21;10:58 - PubMed
  25. Cell Metab. 2015 Nov 3;22(5):861-73 - PubMed
  26. Cell Stem Cell. 2011 Dec 2;9(6):575-87 - PubMed
  27. Cell Mol Life Sci. 2016 Apr;73(8):1645-58 - PubMed
  28. Ann N Y Acad Sci. 2016 Jan;1363:91-8 - PubMed
  29. Trends Cell Biol. 2018 Sep;28(9):698-708 - PubMed
  30. Bioinformatics. 2014 Apr 1;30(7):923-30 - PubMed
  31. BMC Bioinformatics. 2014 Jun 27;15:224 - PubMed
  32. J Am Soc Nephrol. 2004 Jul;15(7):1816-25 - PubMed
  33. PLoS One. 2016 Jan 19;11(1):e0146302 - PubMed
  34. Stem Cell Res Ther. 2017 Dec 04;8(1):273 - PubMed
  35. Medicine (Baltimore). 2015 Sep;94(36):e1480 - PubMed
  36. Obes Surg. 2016 Mar;26(3):603-11 - PubMed
  37. Cell Transplant. 2019 Sep-Oct;28(9-10):1271-1278 - PubMed
  38. Epigenetics Chromatin. 2017 Jul 12;10:36 - PubMed
  39. Mol Cell Biol. 2014 Mar;34(6):1170-86 - PubMed
  40. Trends Biochem Sci. 2010 Nov;35(11):618-26 - PubMed
  41. Stem Cell Rev Rep. 2019 Jun;15(3):427-438 - PubMed
  42. Bioinformatics. 2010 Jan 1;26(1):139-40 - PubMed
  43. Redox Biol. 2019 Feb;21:101091 - PubMed
  44. Sci Rep. 2017 Jul 11;7(1):5125 - PubMed
  45. Int J Biochem Cell Biol. 2015 Jul;64:190-4 - PubMed
  46. PLoS One. 2012;7(11):e50114 - PubMed
  47. J Biol Chem. 2019 Sep 13;294(37):13657-13670 - PubMed
  48. PLoS One. 2019 Apr 8;14(4):e0215083 - PubMed
  49. Stem Cells Transl Med. 2019 May;8(5):430-440 - PubMed
  50. Genome Biol. 2013 Apr 25;14(4):R36 - PubMed
  51. Life Sci. 2016 Mar 1;148:183-93 - PubMed
  52. Cardiovasc Res. 2002 Mar;53(4):1010-8 - PubMed
  53. BMC Genomics. 2014 Jun 03;15:423 - PubMed
  54. Stem Cell Res. 2019 May;37:101423 - PubMed
  55. Lancet. 2011 Aug 27;378(9793):804-14 - PubMed
  56. Obesity (Silver Spring). 2015 Feb;23(2):399-407 - PubMed
  57. Transl Res. 2015 Jan;165(1):154-65 - PubMed
  58. Circ Res. 2019 Oct 11;125(9):824-833 - PubMed
  59. Kidney Int. 2017 Jul;92(1):114-124 - PubMed

Publication Types

Grant support