Display options
Share it on

Eur J Nutr. 2022 Jan 08; doi: 10.1007/s00394-021-02787-7. Epub 2022 Jan 08.

Bioactive fish collagen peptides weaken intestinal inflammation by orienting colonic macrophages phenotype through mannose receptor activation.

European journal of nutrition

Mouna Rahabi, Marie Salon, Christelle Bruno-Bonnet, Mélissa Prat, Godefroy Jacquemin, Khaddouj Benmoussa, Mohamad Alaeddine, Mélissa Parny, José Bernad, Bénédicte Bertrand, Yannick Auffret, Pascale Robert-Jolimaître, Laurent Alric, Hélène Authier, Agnès Coste

Affiliations

  1. UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France.
  2. RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France.
  3. Weishardt International, Rond-Point Georges Jolimaître, BP 259, 81305, Graulhet, France.
  4. Department of Internal Medicine and Digestive Diseases, Pôle Digestif, CHU Toulouse, Toulouse, France.
  5. UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France. [email protected].
  6. RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France. [email protected].

PMID: 34999930 DOI: 10.1007/s00394-021-02787-7

Abstract

PURPOSE: Particular interest is now given to the potential of dietary supplements as alternative non-pharmacological approaches in intestinal inflammation handling. In this aim, this study evaluates the efficiency of fish collagen peptides, Naticol

METHODS: Wild type and Mannose receptor-deficient in the myeloid lineage C57BL/6 mice were administered with Dextran Sodium Sulfate (DSS), Naticol

RESULTS: Naticol

CONCLUSION: Naticol

© 2022. The Author(s).

Keywords: Collagen; Gut inflammation; Innate and adaptive immunity; Mannose receptor; Microbiota

References

  1. Actis GC, Pellicano R, Fagoonee S, Ribaldone DG (2019) History of inflammatory bowel diseases. J Clin Med. https://doi.org/10.3390/jcm8111970 - PubMed
  2. Kühl AA, Erben U, Kredel LI, Siegmund B (2015) Diversity of intestinal macrophages in inflammatory bowel diseases. Front Immunol. https://doi.org/10.3389/fimmu.2015.00613 - PubMed
  3. Kobayashi T, Matsuoka K, Sheikh SZ et al (2012) IL-10 regulates Il12b expression via histone deacetylation: implications for intestinal macrophage homeostasis. J Immunol 189:1792–1799. https://doi.org/10.4049/jimmunol.1200042 - PubMed
  4. Kühn R, Löhler J, Rennick D et al (1993) Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75:263–274. https://doi.org/10.1016/0092-8674(93)80068-p - PubMed
  5. Maheshwari A, Kelly DR, Nicola T et al (2011) TGF-β2 suppresses macrophage cytokine production and mucosal inflammatory responses in the developing intestine. Gastroenterology 140:242–253. https://doi.org/10.1053/j.gastro.2010.09.043 - PubMed
  6. Peterson CT, Sharma V, Elmén L, Peterson SN (2015) Immune homeostasis, dysbiosis and therapeutic modulation of the gut microbiota. Clin Exp Immunol 179:363–377. https://doi.org/10.1111/cei.12474 - PubMed
  7. Mowat AM, Bain CC (2011) Mucosal macrophages in intestinal homeostasis and inflammation. J Innate Immun 3:550–564. https://doi.org/10.1159/000329099 - PubMed
  8. Lissner D, Schumann M, Batra A et al (2015) Monocyte and M1 macrophage-induced barrier defect contributes to chronic intestinal inflammation in IBD. Inflamm Bowel Dis 21:1297–1305. https://doi.org/10.1097/MIB.0000000000000384 - PubMed
  9. Stenson WF (2014) The universe of arachidonic acid metabolites in inflammatory bowel disease: can we tell the good from the bad? Curr Opin Gastroenterol 30:347–351. https://doi.org/10.1097/MOG.0000000000000075 - PubMed
  10. Yue B, Luo X, Yu Z et al (2019) Inflammatory bowel disease: a potential result from the collusion between gut microbiota and mucosal immune system. Microorganisms 7:440. https://doi.org/10.3390/microorganisms7100440 - PubMed
  11. Abegunde AT, Muhammad BH, Bhatti O, Ali T (2016) Environmental risk factors for inflammatory bowel diseases: evidence based literature review. World J Gastroenterol 22:6296–6317. https://doi.org/10.3748/wjg.v22.i27.6296 - PubMed
  12. Knight-Sepulveda K, Kais S, Santaolalla R, Abreu MT (2015) Diet and inflammatory bowel disease. Gastroenterol Hepatol (N Y) 11:511–520 - PubMed
  13. Rajendran N, Kumar D (2010) Role of diet in the management of inflammatory bowel disease. World J Gastroenterol 16:1442–1448 - PubMed
  14. Rossi RE, Whyand T, Murray CD et al (2016) The role of dietary supplements in inflammatory bowel disease: a systematic review. Eur J Gastroenterol Hepatol 28:1357–1364. https://doi.org/10.1097/MEG.0000000000000728 - PubMed
  15. Ricard-Blum S (2011) The collagen family. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a004978 - PubMed
  16. Bruyère O, Zegels B, Leonori L et al (2012) Effect of collagen hydrolysate in articular pain: a 6-month randomized, double-blind, placebo controlled study. Complement Ther Med 20:124–130. https://doi.org/10.1016/j.ctim.2011.12.007 - PubMed
  17. Kim K-O, Lee Y, Hwang J-W et al (2014) Wound healing properties of a 3-D scaffold comprising soluble silkworm gland hydrolysate and human collagen. Colloids Surf B Biointerfaces 116:318–326. https://doi.org/10.1016/j.colsurfb.2013.12.004 - PubMed
  18. Lee C-H, Chang S-H, Chen W-J et al (2015) Augmentation of diabetic wound healing and enhancement of collagen content using nanofibrous glucophage-loaded collagen/PLGA scaffold membranes. J Colloid Interface Sci 439:88–97. https://doi.org/10.1016/j.jcis.2014.10.028 - PubMed
  19. Lee SK, Posthauer ME, Dorner B et al (2006) Pressure ulcer healing with a concentrated, fortified, collagen protein hydrolysate supplement: a randomized controlled trial. Adv Skin Wound Care 19:92–96. https://doi.org/10.1097/00129334-200603000-00011 - PubMed
  20. Ramadass SK, Perumal S, Gopinath A et al (2014) Sol-gel assisted fabrication of collagen hydrolysate composite scaffold: a novel therapeutic alternative to the traditional collagen scaffold. ACS Appl Mater Interfaces 6:15015–15025. https://doi.org/10.1021/am502948g - PubMed
  21. Ichimura T, Yamanaka A, Otsuka T et al (2009) Antihypertensive effect of enzymatic hydrolysate of collagen and Gly-Pro in spontaneously hypertensive rats. Biosci Biotechnol Biochem 73:2317–2319. https://doi.org/10.1271/bbb.90197 - PubMed
  22. Saiga A, Iwai K, Hayakawa T et al (2008) Angiotensin I-converting enzyme-inhibitory peptides obtained from chicken collagen hydrolysate. J Agric Food Chem 56:9586–9591. https://doi.org/10.1021/jf072669w - PubMed
  23. Zhang Y, Kouguchi T, Shimizu K et al (2010) Chicken collagen hydrolysate reduces proinflammatory cytokine production in C57BL/6.KOR-ApoEshl mice. J Nutr Sci Vitaminol 56:208–210. https://doi.org/10.3177/jnsv.56.208 - PubMed
  24. Astre G, Deleruyelle S, Dortignac A et al (2018) Diet-induced obesity and associated disorders are prevented by natural bioactive type 1 fish collagen peptides (Naticol - PubMed
  25. Furuzawa-Carballeda J, Lima G, Llorente L et al (2012) Polymerized-type I collagen downregulates inflammation and improves clinical outcomes in patients with symptomatic knee osteoarthritis following arthroscopic lavage: a randomized, double-blind, and placebo-controlled clinical trial. ScientificWorldJournal 2012:342854. https://doi.org/10.1100/2012/342854 - PubMed
  26. Dar Q-A, Maynard RD, Liu Z et al (2016) Oral hydrolyzed type 1 collagen induces chondroregeneration and inhibits synovial inflammation in murine posttraumatic osteoarthritis. Osteoarthr Cartil 24:S532–S533. https://doi.org/10.1016/j.joca.2016.01.976 - PubMed
  27. Hartog A, Cozijnsen M, de Vrij G, Garssen J (2013) Collagen hydrolysate inhibits zymosan-induced inflammation. Exp Biol Med (Maywood) 238:798–802. https://doi.org/10.1177/1535370213480740 - PubMed
  28. Castro GA, Sgarbieri VC, Carvalho JE et al (2007) Protective effect of collagen derivates on the ulcerative lesions caused by oral administration of ethanol. J Med Food 10:154–158. https://doi.org/10.1089/jmf.2006.262 - PubMed
  29. Castro GA, Carvalho JE, Tinti SV et al (2010) Anti-ulcerogenic effect of a whey protein isolate and collagen hydrolysates against ethanol ulcerative lesions on oral administration to rats. J Med Food 13:83–90. https://doi.org/10.1089/jmf.2008.0277 - PubMed
  30. Melander MC, Jürgensen HJ, Madsen DH et al (2015) The collagen receptor uPARAP/Endo180 in tissue degradation and cancer (review). Int J Oncol 47:1177–1188. https://doi.org/10.3892/ijo.2015.3120 - PubMed
  31. Engelholm LH, Ingvarsen S, Jürgensen HJ et al (2009) The collagen receptor uPARAP/Endo180. Front Biosci (Landmark Ed) 14:2103–2114. https://doi.org/10.2741/3365 - PubMed
  32. Curino AC, Engelholm LH, Yamada SS et al (2005) Intracellular collagen degradation mediated by uPARAP/Endo180 is a major pathway of extracellular matrix turnover during malignancy. J Cell Biol 169:977–985. https://doi.org/10.1083/jcb.200411153 - PubMed
  33. Madsen DH, Leonard D, Masedunskas A et al (2013) M2-like macrophages are responsible for collagen degradation through a mannose receptor-mediated pathway. J Cell Biol 202:951–966. https://doi.org/10.1083/jcb.201301081 - PubMed
  34. Malovic I, Sørensen KK, Elvevold KH et al (2007) The mannose receptor on murine liver sinusoidal endothelial cells is the main denatured collagen clearance receptor. Hepatology 45:1454–1461. https://doi.org/10.1002/hep.21639 - PubMed
  35. Napper CE, Drickamer K, Taylor ME (2006) Collagen binding by the mannose receptor mediated through the fibronectin type II domain. Biochem J 395:579–586. https://doi.org/10.1042/BJ20052027 - PubMed
  36. Sheikh H, Yarwood H, Ashworth A, Isacke CM (2000) Endo180, an endocytic recycling glycoprotein related to the macrophage mannose receptor is expressed on fibroblasts, endothelial cells and macrophages and functions as a lectin receptor. J Cell Sci 113(Pt 6):1021–1032 - PubMed
  37. Eichele DD, Kharbanda KK (2017) Dextran sodium sulfate colitis murine model: an indispensable tool for advancing our understanding of inflammatory bowel diseases pathogenesis. World J Gastroenterol 23:6016–6029. https://doi.org/10.3748/wjg.v23.i33.6016 - PubMed
  38. Rahabi M, Jacquemin G, Prat M et al (2020) Divergent roles for macrophage C-type lectin receptors, dectin-1 and mannose receptors, in the intestinal inflammatory response. Cell Rep 30:4386-4398.e5. https://doi.org/10.1016/j.celrep.2020.03.018 - PubMed
  39. Kimball ES, Wallace NH, Schneider CR et al (2004) Vanilloid receptor 1 antagonists attenuate disease severity in dextran sulphate sodium-induced colitis in mice. Neurogastroenterol Motil 16:811–818. https://doi.org/10.1111/j.1365-2982.2004.00549.x - PubMed
  40. Ameho CK, Adjei AA, Harrison EK et al (1997) Prophylactic effect of dietary glutamine supplementation on interleukin 8 and tumour necrosis factor alpha production in trinitrobenzene sulphonic acid induced colitis. Gut 41:487–493. https://doi.org/10.1136/gut.41.4.487 - PubMed
  41. Weigmann B, Tubbe I, Seidel D et al (2007) Isolation and subsequent analysis of murine lamina propria mononuclear cells from colonic tissue. Nat Protoc 2:2307–2311. https://doi.org/10.1038/nprot.2007.315 - PubMed
  42. Chassaing B, Aitken JD, Malleshappa M, Vijay-Kumar M (2014) Dextran sulfate sodium (DSS)-induced colitis in mice. Curr Protoc Immunol 104:Unit15.25. https://doi.org/10.1002/0471142735.im1525s104 - PubMed
  43. Kabeerdoss J, Jayakanthan P, Pugazhendhi S, Ramakrishna BS (2015) Alterations of mucosal microbiota in the colon of patients with inflammatory bowel disease revealed by real time polymerase chain reaction amplification of 16S ribosomal ribonucleic acid. Indian J Med Res 142:23–32. https://doi.org/10.4103/0971-5916.162091 - PubMed
  44. Zeng M, Inohara N, Nuñez G (2017) Mechanisms of inflammation-driven bacterial dysbiosis in the gut. Mucosal Immunol 10:18–26. https://doi.org/10.1038/mi.2016.75 - PubMed
  45. Cao Y, Shen J, Ran ZH (2014) Association between Faecalibacterium prausnitzii reduction and inflammatory bowel disease: a meta-analysis and systematic review of the literature. Gastroenterol Res Pract 2014:872725. https://doi.org/10.1155/2014/872725 - PubMed
  46. Warheit-Niemi HI, Hult EM, Moore BB (2019) A pathologic two-way street: how innate immunity impacts lung fibrosis and fibrosis impacts lung immunity. Clin Transl Immunol. https://doi.org/10.1002/cti2.1065 - PubMed
  47. Iwai K, Hasegawa T, Taguchi Y et al (2005) Identification of food-derived collagen peptides in human blood after oral ingestion of gelatin hydrolysates. J Agric Food Chem 53:6531–6536. https://doi.org/10.1021/jf050206p - PubMed
  48. Li Y, Li J, Lin S-J et al (2019) Preparation of antioxidant peptide by microwave- assisted hydrolysis of collagen and its protective effect against H - PubMed
  49. Ma Q, Liu Q, Yuan L, Zhuang Y (2018) Protective effects of LSGYGP from fish skin gelatin hydrolysates on UVB-induced MEFs by regulation of oxidative stress and matrix metalloproteinase activity. Nutrients. https://doi.org/10.3390/nu10040420 - PubMed
  50. Ruan J, Chen J, Zeng J et al (2019) The protective effects of Nile tilapia (Oreochromis niloticus) scale collagen hydrolysate against oxidative stress induced by tributyltin in HepG2 cells. Environ Sci Pollut Res Int 26:3612–3620. https://doi.org/10.1007/s11356-018-3729-9 - PubMed
  51. Zhao Q, Kim T, Pang J et al (2017) A novel function of CXCL10 in mediating monocyte production of proinflammatory cytokines. J Leukoc Biol 102:1271–1280. https://doi.org/10.1189/jlb.5A0717-302 - PubMed
  52. Islam J, Koseki T, Watanabe K et al (2017) Dietary supplementation of fermented rice bran effectively alleviates dextran sodium sulfate-induced colitis in mice. Nutrients. https://doi.org/10.3390/nu9070747 - PubMed
  53. Mack DR (2011) Probiotics in inflammatory bowel diseases and associated conditions. Nutrients 3:245–264. https://doi.org/10.3390/nu3020245 - PubMed
  54. Håkansson Å, Tormo-Badia N, Baridi A et al (2015) Immunological alteration and changes of gut microbiota after dextran sulfate sodium (DSS) administration in mice. Clin Exp Med 15:107–120. https://doi.org/10.1007/s10238-013-0270-5 - PubMed
  55. Lin L, Zhang J (2017) Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol. https://doi.org/10.1186/s12865-016-0187-3 - PubMed
  56. Ni J, Wu GD, Albenberg L, Tomov VT (2017) Gut microbiota and IBD: causation or correlation? Nat Rev Gastroenterol Hepatol 14:573–584. https://doi.org/10.1038/nrgastro.2017.88 - PubMed
  57. Jacobs JP, Braun J (2014) Immune and genetic gardening of the intestinal microbiome. FEBS Lett 588:4102–4111. https://doi.org/10.1016/j.febslet.2014.02.052 - PubMed

Publication Types

Grant support