Display options
Share it on

Hum Mol Genet. 2021 Dec 27;31(2):309-319. doi: 10.1093/hmg/ddab240.

Epigenome-wide association study of mitochondrial genome copy number.

Human molecular genetics

Penglong Wang, Christina A Castellani, Jie Yao, Tianxiao Huan, Lawrence F Bielak, Wei Zhao, Jeffrey Haessler, Roby Joehanes, Xianbang Sun, Xiuqing Guo, Ryan J Longchamps, JoAnn E Manson, Megan L Grove, Jan Bressler, Kent D Taylor, Tuuli Lappalainen, Silva Kasela, David J Van Den Berg, Lifang Hou, Alexander Reiner, Yongmei Liu, Eric Boerwinkle, Jennifer A Smith, Patricia A Peyser, Myriam Fornage, Stephen S Rich, Jerome I Rotter, Charles Kooperberg, Dan E Arking, Daniel Levy, Chunyu Liu,

Affiliations

  1. Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
  2. McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
  3. Department of Pathology and Laboratory Medicine, Western University, London, Ontario N6A 5C1, Canada.
  4. Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA.
  5. Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA.
  6. Division of Public Health Science, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
  7. Department of Biostatistics, Boston University, Boston, MA 02118, USA.
  8. Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
  9. Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
  10. New York Genome Center, New York, NY 10013, USA.
  11. Department of Systems Biology, Columbia University, New York, NY 10034, USA.
  12. Department of Population and Public Health Sciences, Center for Genetic Epidemiology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA.
  13. Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
  14. Department of Medicine, Divisions of Cardiology and Neurology, Duke University Medical Center, Durham, NC 27704, USA.
  15. Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA.
  16. Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
  17. Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22903, USA.
  18. Framingham Heart Study, National Heart, Lung, and Blood Institute (NHLBI), Framingham, MA 01702, USA.

PMID: 34415308 PMCID: PMC8742999 DOI: 10.1093/hmg/ddab240

Abstract

We conducted cohort- and race-specific epigenome-wide association analyses of mitochondrial deoxyribonucleic acid (mtDNA) copy number (mtDNA CN) measured in whole blood from participants of African and European origins in five cohorts (n = 6182, mean age = 57-67 years, 65% women). In the meta-analysis of all the participants, we discovered 21 mtDNA CN-associated DNA methylation sites (CpG) (P < 1 × 10-7), with a 0.7-3.0 standard deviation increase (3 CpGs) or decrease (18 CpGs) in mtDNA CN corresponding to a 1% increase in DNA methylation. Several significant CpGs have been reported to be associated with at least two risk factors (e.g. chronological age or smoking) for cardiovascular disease (CVD). Five genes [PR/SET domain 16, nuclear receptor subfamily 1 group H member 3 (NR1H3), DNA repair protein, DNA polymerase kappa and decaprenyl-diphosphate synthase subunit 2], which harbor nine significant CpGs, are known to be involved in mitochondrial biosynthesis and functions. For example, NR1H3 encodes a transcription factor that is differentially expressed during an adipose tissue transition. The methylation level of cg09548275 in NR1H3 was negatively associated with mtDNA CN (effect size = -1.71, P = 4 × 10-8) and was positively associated with the NR1H3 expression level (effect size = 0.43, P = 0.0003), which indicates that the methylation level in NR1H3 may underlie the relationship between mtDNA CN, the NR1H3 transcription factor and energy expenditure. In summary, the study results suggest that mtDNA CN variation in whole blood is associated with DNA methylation levels in genes that are involved in a wide range of mitochondrial activities. These findings will help reveal molecular mechanisms between mtDNA CN and CVD.

© The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: [email protected].

References

  1. Hum Genet. 2014 Sep;133(9):1149-59 - PubMed
  2. PLoS Genet. 2015 Jul 14;11(7):e1005306 - PubMed
  3. Genet Epidemiol. 2010 Dec;34(8):816-34 - PubMed
  4. Cancer Epidemiol Biomarkers Prev. 2011 Jun;20(6):1131-45 - PubMed
  5. Bioinformatics. 2012 Mar 15;28(6):882-3 - PubMed
  6. Bioinformatics. 2009 Jul 15;25(14):1754-60 - PubMed
  7. Cell. 2008 Jul 11;134(1):112-23 - PubMed
  8. Am J Epidemiol. 1989 Apr;129(4):687-702 - PubMed
  9. Cell Death Dis. 2015 Feb 26;6:e1664 - PubMed
  10. BMC Bioinformatics. 2012 May 08;13:86 - PubMed
  11. Mol Cell Biol. 2018 Jan 16;38(3): - PubMed
  12. Nat Biotechnol. 2010 Oct;28(10):1045-8 - PubMed
  13. Epigenomics. 2009 Oct;1(1):177-200 - PubMed
  14. Genome Biol. 2017 Jan 25;18(1):16 - PubMed
  15. Rev Neurol (Paris). 1991;147(6-7):417-30 - PubMed
  16. Epigenomics. 2012 Feb;4(1):17-27 - PubMed
  17. Mitochondrion. 2015 Jan;20:13-21 - PubMed
  18. Genome Biol. 2015 Jan 22;16:8 - PubMed
  19. Control Clin Trials. 1998 Feb;19(1):61-109 - PubMed
  20. Haematologica. 2013 Oct;98(10):1487-9 - PubMed
  21. Prev Med. 1975 Dec;4(4):518-25 - PubMed
  22. Nat Biotechnol. 2010 Oct;28(10):1057-68 - PubMed
  23. Cell Metab. 2007 Jul;6(1):38-54 - PubMed
  24. J Mol Neurosci. 2008 Jul;35(3):283-7 - PubMed
  25. Cancer Res. 2017 Nov 15;77(22):6202-6214 - PubMed
  26. Mol Cell Biochem. 2012 Jun;365(1-2):343-50 - PubMed
  27. J Am Soc Nephrol. 2016 Aug;27(8):2467-73 - PubMed
  28. Am J Epidemiol. 2002 Nov 1;156(9):871-81 - PubMed
  29. Nat Genet. 2013 Aug;45(8):899-901 - PubMed
  30. Nature. 2012 Sep 6;489(7414):57-74 - PubMed
  31. J Biol Chem. 2010 Jun 18;285(25):18984-90 - PubMed
  32. Mol Microbiol. 2009 Jan;71(1):185-97 - PubMed
  33. Genomics. 2011 Oct;98(4):288-95 - PubMed
  34. Neuropsychopharmacology. 2013 Jan;38(1):23-38 - PubMed
  35. Biochim Biophys Acta. 2012 Sep-Oct;1819(9-10):970-8 - PubMed
  36. BMC Genomics. 2015 Mar 19;16:215 - PubMed
  37. Am J Med. 2004 May 15;116(10):676-81 - PubMed
  38. Nature. 2002 Aug 8;418(6898):650-4 - PubMed
  39. Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5618-23 - PubMed
  40. PLoS Genet. 2008 Apr 25;4(4):e1000061 - PubMed
  41. Bioinformatics. 2017 Jan 15;33(2):272-279 - PubMed
  42. Bioinformatics. 2019 Nov 1;35(22):4767-4769 - PubMed
  43. Cell Signal. 2007 Aug;19(8):1633-42 - PubMed
  44. Biometrics. 1999 Dec;55(4):997-1004 - PubMed
  45. Genome Med. 2020 Sep 28;12(1):84 - PubMed
  46. Obes Surg. 2002 Jun;12(3):324-7 - PubMed
  47. Genome Res. 2021 Mar;31(3):349-358 - PubMed
  48. PLoS One. 2020 Jan 31;15(1):e0228166 - PubMed
  49. Nat Rev Genet. 2005 May;6(5):389-402 - PubMed
  50. Cell. 2012 Mar 16;148(6):1145-59 - PubMed
  51. Mitochondrion. 2014 Jul;17:14-21 - PubMed
  52. Neurobiol Aging. 2016 Feb;38:216.e7-216.e10 - PubMed
  53. Am J Epidemiol. 2007 Jun 1;165(11):1328-35 - PubMed
  54. J Genet Genomics. 2009 Mar;36(3):125-31 - PubMed
  55. Epigenetics Chromatin. 2013 Mar 03;6(1):4 - PubMed
  56. J Biol Chem. 2000 Feb 4;275(5):3343-7 - PubMed
  57. Bioinformatics. 2010 Nov 15;26(22):2849-55 - PubMed
  58. Cancer Res. 2018 Aug 15;78(16):4471-4481 - PubMed
  59. Nucleic Acids Res. 2019 Jan 8;47(D1):D419-D426 - PubMed
  60. PLoS Genet. 2007 Sep;3(9):1724-35 - PubMed
  61. Genes Dev. 2013 Dec 15;27(24):2615-27 - PubMed
  62. Blood. 1994 Dec 15;84(12):4186-94 - PubMed
  63. JAMA Cardiol. 2017 Nov 1;2(11):1247-1255 - PubMed
  64. Arterioscler Thromb Vasc Biol. 2013 Jun;33(6):1418-26 - PubMed
  65. Nat Struct Mol Biol. 2013 Mar;20(3):274-81 - PubMed
  66. Epigenetics Chromatin. 2018 Sep 12;11(1):53 - PubMed
  67. Hum Genet. 2021 Dec 2;: - PubMed
  68. Bioinformatics. 2005 Mar;21(6):730-40 - PubMed
  69. Elife. 2016 Feb 22;5: - PubMed
  70. Epigenetics. 2013 Feb;8(2):203-9 - PubMed
  71. Oncotarget. 2018 May 4;9(34):23334-23348 - PubMed
  72. Nature. 2021 Feb;590(7845):290-299 - PubMed
  73. Nat Commun. 2019 Sep 19;10(1):4267 - PubMed
  74. Autophagy. 2009 Jan;5(1):19-32 - PubMed

Publication Types

Grant support