Display options
Share it on

Nucleic Acids Res. 2022 Jan 11;50(1):e3. doi: 10.1093/nar/gkab867.

Ethylenediamine derivatives efficiently react with oxidized RNA 3' ends providing access to mono and dually labelled RNA probes for enzymatic assays and in vivo translation.

Nucleic acids research

Adam Mamot, Pawel J Sikorski, Aleksandra Siekierska, Peter de Witte, Joanna Kowalska, Jacek Jemielity

Affiliations

  1. Centre of New Technologies, University of Warsaw, Banacha 2c Street, 02-097 Warsaw, Poland.
  2. Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5 Street, 02-093 Warsaw, Poland.
  3. Laboratory for Molecular Biodiscovery, KU Leuven, Campus Gasthuisberg, Herestraat 49, O&N II, 3000 Leuven, Belgium.

PMID: 34591964 PMCID: PMC8755103 DOI: 10.1093/nar/gkab867

Abstract

Development of RNA-based technologies relies on the ability to detect, manipulate, and modify RNA. Efficient, selective and scalable covalent modification of long RNA molecules remains a challenge. We report a chemical method for modification of RNA 3'-end based on previously unrecognized superior reactivity of N-substituted ethylenediamines in reductive amination of periodate-oxidized RNA. Using this method, we obtained fluorescently labelled or biotinylated RNAs varying in length (from 3 to 2000 nt) and carrying different 5' ends (including m7G cap) in high yields (70-100% by HPLC). The method is scalable (up to sub-milligrams of mRNA) and combined with label-facilitated HPLC purification yields highly homogeneous products. The combination of 3'-end labelling with 5'-end labelling by strain-promoted azide-alkyne cycloaddition (SPAAC) afforded a one-pot protocol for site-specific RNA bifunctionalization, providing access to two-colour fluorescent RNA probes. These probes exhibited fluorescence resonance energy transfer (FRET), which enabled real-time monitoring of several RNA hydrolase activities (RNase A, RNase T1, RNase R, Dcp1/2, and RNase H). Dually labelled mRNAs were efficiently translated in cultured cells and in zebrafish embryos, which combined with their detectability by fluorescent methods and scalability of the synthesis, opens new avenues for the investigation of mRNA metabolism and the fate of mRNA-based therapeutics.

© The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research.

References

  1. Nature. 1953 Jun 27;171(4365):1151-2 - PubMed
  2. Nature. 2020 Oct;586(7830):594-599 - PubMed
  3. Nucleic Acids Res. 2017 Jul 7;45(12):e113 - PubMed
  4. J Am Chem Soc. 2021 Apr 14;143(14):5413-5424 - PubMed
  5. Science. 1995 Jan 13;267(5195):234-7 - PubMed
  6. RNA Biol. 2019 Sep;16(9):1119-1132 - PubMed
  7. Nucleic Acids Res. 2019 Apr 23;47(7):e42 - PubMed
  8. J Biol Chem. 1961 Mar;236:PC9-10 - PubMed
  9. Nucleic Acids Res. 2003 Feb 15;31(4):e13 - PubMed
  10. Angew Chem Int Ed Engl. 2018 Mar 5;57(11):2822-2826 - PubMed
  11. Nat Methods. 2009 May;6(5):331-8 - PubMed
  12. J Mol Biol. 2000 Jun 16;299(4):941-51 - PubMed
  13. Biochem J. 1952 Dec;52(4):558-65 - PubMed
  14. Biochemistry. 1963 Mar-Apr;2:344-50 - PubMed
  15. Nucleic Acids Res. 2011 Nov;39(21):e142 - PubMed
  16. Chem Commun (Camb). 2020 Nov 18;56(89):13832-13835 - PubMed
  17. Nucleic Acids Res. 1974 Jun;1(6):767-86 - PubMed
  18. Nucleic Acids Res. 1994 Oct 11;22(20):4087-94 - PubMed
  19. Eur J Biochem. 1976 Feb 2;62(1):125-30 - PubMed
  20. Biochimie. 2010 Jul;92(7):772-8 - PubMed
  21. RNA. 2001 Oct;7(10):1486-95 - PubMed
  22. FEBS Lett. 1994 Jul 18;348(3):233-8 - PubMed
  23. Wiley Interdiscip Rev RNA. 2021 Mar;12(2):e1611 - PubMed
  24. Nat Rev Drug Discov. 2018 Apr;17(4):261-279 - PubMed
  25. Angew Chem Int Ed Engl. 2017 Dec 4;56(49):15628-15632 - PubMed
  26. Nat Struct Mol Biol. 2020 Dec;27(12):1095-1104 - PubMed
  27. Nat Rev Mol Cell Biol. 2015 Feb;16(2):95-109 - PubMed
  28. Chem Biol. 1995 Nov;2(11):761-70 - PubMed
  29. Biochemistry. 1972 Feb 15;11(4):533-7 - PubMed
  30. Org Biomol Chem. 2018 Jan 17;16(3):393-401 - PubMed
  31. Nucleic Acids Res. 2018 Feb 16;46(3):e13 - PubMed
  32. J Biol Chem. 1985 Dec 15;260(29):15708-13 - PubMed
  33. Nat Struct Mol Biol. 2010 Sep;17(9):1096-101 - PubMed
  34. Anal Bioanal Chem. 2012 Oct;404(6-7):1779-87 - PubMed
  35. Exp Mol Med. 2021 Mar;53(3):310-317 - PubMed
  36. RNA. 2020 Dec;26(12):1815-1837 - PubMed
  37. Mol Cell. 2007 Oct 26;28(2):264-76 - PubMed
  38. Nat Commun. 2018 Oct 18;9(1):4328 - PubMed
  39. Angew Chem Int Ed Engl. 2016 Aug 22;55(35):10283-6 - PubMed
  40. Chembiochem. 2020 Jun 2;21(11):1641-1646 - PubMed
  41. Mol Cell Biol. 2009 Mar;29(6):1442-51 - PubMed
  42. Proc Natl Acad Sci U S A. 1960 Jun;46(6):811-22 - PubMed

Publication Types

Grant support