Display options
Share it on

Planta. 2022 Jan 11;255(2):35. doi: 10.1007/s00425-022-03821-6.

SorghumBase: a web-based portal for sorghum genetic information and community advancement.

Planta

Nicholas Gladman, Andrew Olson, Sharon Wei, Kapeel Chougule, Zhenyuan Lu, Marcela Tello-Ruiz, Ivar Meijs, Peter Van Buren, Yinping Jiao, Bo Wang, Vivek Kumar, Sunita Kumari, Lifang Zhang, John Burke, Junping Chen, Gloria Burow, Chad Hayes, Yves Emendack, Zhanguo Xin, Doreen Ware

Affiliations

  1. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
  2. Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, 79409, USA.
  3. Plant Stress and Germplasm Development Unit, Cropping Systems Research Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Lubbock, TX, 79415, USA.
  4. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA. [email protected].
  5. U.S. Department of Agriculture-Agricultural Research Service, NEA Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY, 14853, USA. [email protected].

PMID: 35015132 DOI: 10.1007/s00425-022-03821-6

Abstract

MAIN CONCLUSION: SorghumBase provides a community portal that integrates genetic, genomic, and breeding resources for sorghum germplasm improvement. Public research and development in agriculture rely on proper data and resource sharing within stakeholder communities. For plant breeders, agronomists, molecular biologists, geneticists, and bioinformaticians, centralizing desirable data into a user-friendly hub for crop systems is essential for successful collaborations and breakthroughs in germplasm development. Here, we present the SorghumBase web portal ( https://www.sorghumbase.org ), a resource for the sorghum research community. SorghumBase hosts a wide range of sorghum genomic information in a modular framework, built with open-source software, to provide a sustainable platform. This initial release of SorghumBase includes: (1) five sorghum reference genome assemblies in a pan-genome browser; (2) genetic variant information for natural diversity panels and ethyl methanesulfonate (EMS)-induced mutant populations; (3) search interface and integrated views of various data types; (4) links supporting interconnectivity with other repositories including genebank, QTL, and gene expression databases; and (5) a content management system to support access to community news and training materials. SorghumBase offers sorghum investigators improved data collation and access that will facilitate the growth of a robust research community to support genomics-assisted breeding.

© 2022. This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply.

Keywords: Breeding; Genetic; Genomic; Molecular; Resource; Sorghum

References

  1. Banks JA, Nishiyama T, Hasebe M et al (2011) The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332:960–963 - PubMed
  2. Barnaud A, Trigueros G, McKey D, Joly HI (2008) High outcrossing rates in fields with mixed sorghum landraces: how are landraces maintained? Heredity 101:445–452 - PubMed
  3. Berardini TZ, Reiser L, Li D et al (2015) The Arabidopsis information resource: making and mining the “gold standard” annotated reference plant genome. Genesis 53:474–485 - PubMed
  4. Blake VC, Woodhouse MR, Lazo GR et al (2019) GrainGenes: centralized small grain resources and digital platform for geneticists and breeders. Database. https://doi.org/10.1093/database/baz065 - PubMed
  5. Boatwright JL, Brenton ZW, Boyles RE et al (2021) Genetic characterization of a Sorghum bicolor multiparent mapping population emphasizing carbon-partitioning dynamics. G3. https://doi.org/10.1093/g3journal/jkab060 - PubMed
  6. Bouchet S, Olatoye MO, Marla SR et al (2017) Increased power to dissect adaptive traits in global sorghum diversity using a nested association mapping population. Genetics 206:573–585 - PubMed
  7. Brenton ZW, Cooper EA, Myers MT et al (2016) A genomic resource for the development, improvement, and exploitation of sorghum for bioenergy. Genetics 204:21–33 - PubMed
  8. Casa AM, Pressoir G, Brown PJ et al (2008) Community resources and strategies for association mapping in sorghum. Crop Sci 48:30–40 - PubMed
  9. Cooper EA, Brenton ZW, Flinn BS et al (2019) A new reference genome for Sorghum bicolor reveals high levels of sequence similarity between sweet and grain genotypes: implications for the genetics of sugar metabolism. BMC Genomics 20:420 - PubMed
  10. Cuevas HE, Fermin-Pérez RA, Prom LK et al (2019) Genome-wide association mapping of grain mold resistance in the US Sorghum Association Panel. Plant Genome. https://doi.org/10.3835/plantgenome2018.09.0070 - PubMed
  11. de Wet JMJ, de Wet JMJ, Huckabay JP (1967) The origin of Sorghum bicolor. II. Distribution and domestication. Evolution 21:787 - PubMed
  12. Deschamps S, Zhang Y, Llaca V et al (2018) A chromosome-scale assembly of the sorghum genome using nanopore sequencing and optical mapping. Nat Commun 9:4844 - PubMed
  13. Dillon SL, Shapter FM, Henry RJ et al (2007) Domestication to crop improvement: genetic resources for Sorghum and Saccharum (Andropogoneae). Ann Bot 100:975–989 - PubMed
  14. Djè Y, Heuertz M, Ater M et al (2004) In situ estimation of outcrossing rate in sorghum landraces using microsatellite markers. Euphytica 138:205–212 - PubMed
  15. dos Santos G, Schroeder AJ, Goodman JL et al (2015) FlyBase: introduction of the Drosophila melanogaster Release 6 reference genome assembly and large-scale migration of genome annotations. Nucleic Acids Res 43:D690–D697 - PubMed
  16. Doumbia MD, Hossner LR, Onken AB (1993) Variable sorghum growth in acid soils of subhumid West Africa. Arid Soil Res Rehabil 7:335–346 - PubMed
  17. Doumbia MD, Hossner LR, Onken AB (1998) Sorghum growth in acid soils of West Africa: variations in soil chemical properties. Arid Soil Res Rehabil 12:179–190 - PubMed
  18. Goodstein DM, Shu S, Howson R et al (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186 - PubMed
  19. Grant D, Nelson RT, Cannon SB, Shoemaker RC (2010) SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Res 38:D843–D846 - PubMed
  20. Howe KL, Contreras-Moreira B, De Silva N et al (2020) Ensembl Genomes 2020-enabling non-vertebrate genomic research. Nucleic Acids Res 48:D689–D695 - PubMed
  21. Hufnagel B, de Sousa SM, Assis L et al (2014) Duplicate and conquer: multiple homologs of PHOSPHORUS-STARVATION TOLERANCE1 enhance phosphorus acquisition and sorghum performance on low-phosphorus soils. Plant Physiol 166:659–677 - PubMed
  22. Intergovernmental Panel on Climate Change (2014) Climate change 2014: synthesis report (longer report). IPCC - PubMed
  23. Jaillon O, Aury J-M, Noel B et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467 - PubMed
  24. Jiao Y, Burke J, Chopra R et al (2016) A sorghum mutant resource as an efficient platform for gene discovery in grasses. Plant Cell 28:1551–1562 - PubMed
  25. Jiao Y, Peluso P, Shi J et al (2017) Improved maize reference genome with single-molecule technologies. Nature 546:524–527 - PubMed
  26. Kawahara Y, de la Bastide M, Hamilton JP et al (2013) Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6:4 - PubMed
  27. Kersey PJ, Allen JE, Allot A et al (2018) Ensembl Genomes 2018: an integrated omics infrastructure for non-vertebrate species. Nucleic Acids Res 46:D802–D808 - PubMed
  28. Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4:1073–1081 - PubMed
  29. Lai X, Yan L, Lu Y, Schnable JC (2018) Largely unlinked gene sets targeted by selection for domestication syndrome phenotypes in maize and sorghum. Plant J 93:843–855 - PubMed
  30. Leiser WL, Rattunde HFW, Weltzien E et al (2014) Two in one sweep: aluminum tolerance and grain yield in P-limited soils are associated to the same genomic region in West African sorghum. BMC Plant Biol 14:206 - PubMed
  31. Lozano R, Gazave E, Dos Santos JPR et al (2021) Comparative evolutionary genetics of deleterious load in sorghum and maize. Nat Plants 7:17–24 - PubMed
  32. Mace ES, Jordan DR (2011) Integrating sorghum whole genome sequence information with a compendium of sorghum QTL studies reveals uneven distribution of QTL and of gene-rich regions with significant implications for crop improvement. Theor Appl Genet 123(1):169–191. https://doi.org/10.1007/s00122-011-1575-y - PubMed
  33. Mace ES, Tai S, Gilding EK et al (2013) Whole-genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghum. Nat Commun 4:2320 - PubMed
  34. Mace E, Innes D, Hunt C et al (2019) The Sorghum QTL Atlas: a powerful tool for trait dissection, comparative genomics and crop improvement. Theor Appl Genet 132:751–766 - PubMed
  35. McCormick RF, Truong SK, Sreedasyam A et al (2018) The Sorghum bicolor reference genome: improved assembly, gene annotations, a transcriptome atlas, and signatures of genome organization. Plant J 93:338–354 - PubMed
  36. McLaren W, Gil L, Hunt SE et al (2016) The ensembl variant effect predictor. Genome Biol 17:122 - PubMed
  37. Merchant SS, Prochnik SE, Vallon O et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250 - PubMed
  38. Morris GP, Ramu P, Deshpande SP et al (2013) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci USA 110:453–458 - PubMed
  39. Ochieng G, Ngugi K, Wamalwa LN et al (2021) Novel sources of drought tolerance from landraces and wild sorghum relatives. Crop Sci 61:104–118 - PubMed
  40. Papatheodorou I, Moreno P, Manning J et al (2020) Expression Atlas update: from tissues to single cells. Nucleic Acids Res 48:D77–D83 - PubMed
  41. Paterson AH, Bowers JE, Bruggmann R et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556 - PubMed
  42. Perumal R, Tesso TT, Morris GP et al (2021) Registration of the sorghum nested association mapping (NAM) population in RTx430 background. J Plant Regist 15:395–402 - PubMed
  43. Shakoor N, Ziegler G, Dilkes BP et al (2016) Integration of experiments across diverse environments identifies the genetic determinants of variation in Sorghum bicolor seed element composition. Plant Physiol 170:1989–1998 - PubMed
  44. Tack J, Lingenfelser J, Jagadish SVK (2017) Disaggregating sorghum yield reductions under warming scenarios exposes narrow genetic diversity in US breeding programs. Proc Natl Acad Sci USA 114:9296–9301 - PubMed
  45. Tello-Ruiz MK, Naithani S, Gupta P et al (2021) Gramene 2021: harnessing the power of comparative genomics and pathways for plant research. Nucleic Acids Res 49:D1452–D1463 - PubMed
  46. Wang B, Jiao Y, Chougule K et al (2021) Pan-genome analysis in sorghum highlights the extent of genomic variation and sugarcane aphid resistance genes. bioRxiv 2021.01.03.424980 - PubMed
  47. Wilkinson MD, Dumontier M, Aalbersberg IJJ et al (2016) The FAIR guiding principles for scientific data management and stewardship. Sci Data 3:160018 - PubMed
  48. Woodhouse MR, Cannon EK, Portwood JL 2nd et al (2021) A pan-genomic approach to genome databases using maize as a model system. BMC Plant Biol 21:385 - PubMed

Publication Types

Grant support