Display options
Share it on

Ann Biomed Eng. 2021 Sep;49(9):2377-2388. doi: 10.1007/s10439-021-02767-2. Epub 2021 May 04.

Regional Gas Transport During Conventional and Oscillatory Ventilation Assessed by Xenon-Enhanced Computed Tomography.

Annals of biomedical engineering

Jacob Herrmann, Sarah E Gerard, Joseph M Reinhardt, Eric A Hoffman, David W Kaczka

Affiliations

  1. Department of Anesthesia, University of Iowa, Iowa City, IA, USA.
  2. Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA.
  3. Department of Radiology, University of Iowa, Iowa City, IA, USA.
  4. Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.
  5. Department of Anesthesia, University of Iowa, Iowa City, IA, USA. [email protected].
  6. Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA. [email protected].
  7. Department of Radiology, University of Iowa, Iowa City, IA, USA. [email protected].

PMID: 33948747 DOI: 10.1007/s10439-021-02767-2

Abstract

Enhanced intrapulmonary gas transport enables oscillatory ventilation modalities to support gas exchange using extremely low tidal volumes at high frequencies. However, it is unknown whether gas transport rates can be improved by combining multiple frequencies of oscillation simultaneously. The goal of this study was to investigate distributed gas transport in vivo during multi-frequency oscillatory ventilation (MFOV) as compared with conventional mechanical ventilation (CMV) or high-frequency oscillatory ventilation (HFOV). We hypothesized that MFOV would result in more uniform rates of gas transport compared to HFOV, measured using contrast-enhanced CT imaging during wash-in of xenon gas. In 13 pigs, xenon wash-in equilibration rates were comparable between CMV and MFOV, but 21 to 39% slower for HFOV. By contrast, the root-mean-square delivered volume was lowest for MFOV, increased by 70% during HFOV and 365% during CMV. Overall gas transport heterogeneity was similar across all modalities, but gravitational gradients and regional patchiness of specific ventilation contributed to regional ventilation heterogeneity, depending on ventilator modality. We conclude that MFOV combines benefits of low lung stretch, similar to HFOV, but with fast rates of gas transport, similar to CMV.

© 2021. Biomedical Engineering Society.

Keywords: High-frequency ventilation; Mechanical ventilation; Pulmonary gas exchange; Respiratory-gated imaging techniques

References

  1. Amini, R., and D. W. Kaczka. Impact of ventilation frequency and parenchymal stiffness on flow and pressure distribution in a canine lung model. Ann. Biomed. Eng. 41:2699–2711, 2013. - PubMed
  2. Bonett, D. G. Confidence interval for a coefficient of quartile variation. Comput. Stat. Data Anal. 50:2953–2957, 2006. - PubMed
  3. Calvet, J. H., B. Louis, P. Giry, A. Harf, and D. Isabey. Effect of gas density variations on respiratory input impedance in humans. Respir. Physiol. 104:241–250, 1996. - PubMed
  4. Chang, H. K. Mechanisms of gas transport during ventilation by high-frequency oscillation. J. Appl. Physiol. 56:553–563, 1984. - PubMed
  5. Choi, J., G. Xia, M. H. Tawhai, E. A. Hoffman, and C.-L. Lin. Numerical study of high-frequency oscillatory air flow and convective mixing in a CT-based human airway model. Ann. Biomed. Eng. 38:3550–3571, 2010. - PubMed
  6. Conze, P. H., V. Noblet, F. Rousseau, F. Heitz, V. de Blasi, R. Memeo, and P. Pessaux. Scale-adaptive supervoxel-based random forests for liver tumor segmentation in dynamic contrast-enhanced CT scans. Int. J. Comput. Assist. Radiol. Surg. 12:223–233, 2017. - PubMed
  7. Fortune, J. B., and P. D. Wagner. Effects of common dead space on inert gas exchange in mathematical models of the lung. J. Appl. Physiol. 47:896–906, 1979. - PubMed
  8. Fredberg, J. J., D. H. Keefe, G. M. Glass, R. G. Castile, and I. D. Frantz. Alveolar pressure nonhomogeneity during small-amplitude high-frequency oscillation. J. Appl. Physiol. 57:788–800, 1984. - PubMed
  9. Fuld, M. K., A. F. Halaweish, J. D. Newell, B. Krauss, and E. A. Hoffman. Optimization of dual-energy xenon-computed tomography for quantitative assessment of regional pulmonary ventilation. Investig. Radiol. 48:629–637, 2013. - PubMed
  10. Gerard, S. E., J. Herrmann, D. W. Kaczka, G. Musch, A. Fernandez-Bustamante, and J. M. Reinhardt. Multi-resolution convolutional neural networks for fully automated segmentation of acutely injured lungs in multiple species. Med. Image Anal. 60:2020. - PubMed
  11. Gerard, S. E., J. Herrmann, D. W. Kaczka, and J. M. Reinhardt. Transfer learning for segmentation of injured lungs using coarse-to-fine convolutional neural networks. In: Image Analysis for Moving Organ, Breast, and Thoracic Images. Berlin: Springer, pp. 191–201, 2018. - PubMed
  12. Glenny, R. W., and H. T. Robertson. Spatial distribution of ventilation and perfusion: mechanisms and regulation. Compr. Physiol. 1:375–395, 2011. - PubMed
  13. Herrmann, J., S. E. Gerard, W. Shao, M. L. Hawley, J. M. Reinhardt, G. E. Christensen, E. A. Hoffman, and D. W. Kaczka. Quantifying regional lung deformation using four-dimensional computed tomography: a comparison of conventional and oscillatory ventilation. Front. Physiol. 11:1–20, 2020. - PubMed
  14. Herrmann, J., E. A. Hoffman, and D. W. Kaczka. Frequency-selective computed tomography: applications during periodic thoracic motion. IEEE Trans. Med. Imaging 36:1722–1732, 2017. - PubMed
  15. Herrmann, J., W. Lilitwat, M. H. Tawhai, and D. W. Kaczka. High-frequency oscillatory ventilation and ventilator-induced lung injury: size does matter. Crit. Care Med. 48:e66–e73, 2020. - PubMed
  16. Herrmann, J., J. M. Reinhardt, E. A. Hoffman, and D. W. Kaczka. Xenon-enhanced CT for measurement of regional gas transport during oscillatory ventilation. Am. J. Respir. Crit. Care Med. 197:A4477, 2018. - PubMed
  17. Herrmann, J., M. H. Tawhai, and D. W. Kaczka. Regional gas transport in the heterogeneous lung during oscillatory ventilation. J. Appl. Physiol. 121:1306–1318, 2016. - PubMed
  18. Herrmann, J., M. H. Tawhai, and D. W. Kaczka. Parenchymal strain heterogeneity during oscillatory ventilation: why two frequencies are better than one. J. Appl. Physiol. 124:653–663, 2018. - PubMed
  19. Herrmann, J., M. H. Tawhai, and D. W. Kaczka. Strain, strain rate, and mechanical power: an optimization comparison for oscillatory ventilation. Int. J. Numer. Methods Biomed. Eng. 35:2019. - PubMed
  20. Hoffman, E. A. Effect of body orientation on regional lung expansion: a computed tomographic approach. J. Appl. Physiol. 59:468–480, 1985. - PubMed
  21. Hoffman, E. A., and D. Chon. Computed tomography studies of lung ventilation and perfusion. Proc. Am. Thorac. Soc. 2:492–498, 2005. - PubMed
  22. Johnson, N. J., A. M. Luks, and R. W. Glenny. Gas exchange in the prone posture. Respir. Care 62:1097–1110, 2017. - PubMed
  23. Kaczka, D. W., J. Herrmann, C. E. E. Zonneveld, D. G. Tingay, A. Lavizzari, P. B. Noble, and J. J. Pillow. Multifrequency oscillatory ventilation in the premature lung: effects on gas exchange, mechanics, and ventilation distribution. Anesthesiology 123:1394–1403, 2015. - PubMed
  24. Klein, S., M. Staring, K. Murphy, M. A. Viergever, and J. P. W. Pluim. Elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29:196–205, 2010. - PubMed
  25. Liu, S., Y. Yi, M. Wang, Q. Chen, Y. Huang, L. Liu, J. Xie, D. Zhou, and H. Qiu. Higher frequency ventilation attenuates lung injury during high-frequency oscillatory ventilation in sheep models of acute respiratory distress syndrome. Anesthesiology 119:398–411, 2013. - PubMed
  26. Lusic, H., and M. W. Grinstaff. X-ray computed tomography contrast agents. Chem. Rev. 113:1641–1666, 2013. - PubMed
  27. Marcucci, C., D. Nyhan, and B. A. Simon. Distribution of pulmonary ventilation using Xe-enhanced computed tomography in prone and supine dogs. J. Appl. Physiol. 90:421–430, 2001. - PubMed
  28. Mulreany, D. G., B. A. Simon, K. J. Murphy, and R. B. Easley. Volumetric xenon-CT imaging of conventional and high-frequency oscillatory ventilation. Acad. Radiol. 16:718–725, 2009. - PubMed
  29. Perchiazzi, G., C. Rylander, S. Derosa, M. Pellegrini, L. Pitagora, D. Polieri, A. Vena, A. Tannoia, T. Fiore, and G. Hedenstierna. Regional distribution of lung compliance by image analysis of computed tomograms. Respir. Physiol. Neurobiol. 201:60–70, 2014. - PubMed
  30. Reinhardt, J. M., K. Ding, K. Cao, G. E. Christensen, E. A. Hoffman, and S. V. Bodas. Registration-based estimates of local lung tissue expansion compared to xenon CT measures of specific ventilation. Med. Image Anal. 12:752–763, 2008. - PubMed
  31. Rotger, M., R. Farré, D. Navajas, and R. Peslin. Respiratory input impedance up to 256 Hz in healthy humans breathing foreign gases. J. Appl. Physiol. 75:307–320, 1993. - PubMed
  32. Roth, C. J., K. M. Förster, A. Hilgendorff, B. Ertl-Wagner, W. A. Wall, and A. W. Flemmer. Gas exchange mechanisms in preterm infants on HFOV—a computational approach. Sci. Rep. 8:1–8, 2018. - PubMed
  33. Rousseeuw, P. J. Least median of squares regression. J. Am. Stat. Assoc. 79:871–880, 1984. - PubMed
  34. Simon, B. A. Non-invasive imaging of regional lung function using x-ray computed tomography. J. Clin. Monit. Comput. 16:433–442, 2000. - PubMed
  35. Simon, B. A., C. Marcucci, M. Fung, and S. R. Lele. Parameter estimation and confidence intervals for Xe-CT ventilation studies: a Monte Carlo approach. J. Appl. Physiol. 84:709–716, 1998. - PubMed
  36. Skillings, J. H., and G. A. Mack. On the use of a Friedman-type statistic in balanced and unbalanced block designs. Technometrics 23:171–177, 1981. - PubMed
  37. Sklar, M. C., E. Fan, and E. C. Goligher. High-frequency oscillatory ventilation in adults with ARDS: past, present, and future. Chest 152:1306–1317, 2017. - PubMed
  38. Tsuzaki, K., C. A. Hales, D. J. Strieder, and J. G. Venegas. Regional lung mechanics and gas transport in lungs with inhomogeneous compliance. J. Appl. Physiol. 75:206–216, 1993. - PubMed
  39. Venegas, J. G., K. Tsuzaki, B. J. Fox, B. A. Simon, and C. A. Hales. Regional coupling between chest wall and lung expansion during HFV: a positron imaging study. J. Appl. Physiol. 74:2242–2252, 1993. - PubMed
  40. Venegas, J. G., Y. Yamada, C. Burnham, and C. A. Hales. Local gas transport in eucapnic ventilation: effects of gravity and breathing frequency. J. Appl. Physiol. 68:2287–2295, 1990. - PubMed
  41. Venegas, J. G., Y. Yamada, J. Custer, and C. A. Hales. Effects of respiratory variables on regional gas transport during high-frequency ventilation. J. Appl. Physiol. 64:2108–2118, 1988. - PubMed
  42. West, J. B. Respiratory Physiology: The Essentials. Philadelphia, PA: Lippincott Williams & Wilkins, p. 200, 2012. - PubMed
  43. Yamada, Y., C. Burnham, C. A. Hales, and J. G. Venegas. Regional mapping of gas transport during high-frequency and conventional ventilation. J. Appl. Physiol. 66:1209–1218, 1989. - PubMed
  44. Zannin, E., R. L. Dellacà, G. Dognini, L. Marconi, M. Perego, J. J. Pillow, P. E. Tagliabue, and M. L. Ventura. Effect of frequency on pressure cost of ventilation and gas exchange in newborns receiving high-frequency oscillatory ventilation. Pediatr. Res. 82:994–999, 2017. - PubMed

Publication Types

Grant support