Display options
Share it on

Cells. 2021 Dec 27;11(1). doi: 10.3390/cells11010070.

Transcriptomic and Functional Evidence Show Similarities between Human Amniotic Epithelial Stem Cells and Keratinocytes.

Cells

Li-Ping Liu, Dong-Xu Zheng, Zheng-Fang Xu, Hu-Cheng Zhou, Yun-Cong Wang, Hang Zhou, Jian-Yun Ge, Daisuke Sako, Mi Li, Kazunori Akimoto, Yu-Mei Li, Yun-Wen Zheng

Affiliations

  1. Institute of Regenerative Medicine, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China.
  2. Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
  3. Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan.
  4. Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
  5. Department of Obstetrics and Gynaecology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
  6. Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.
  7. Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan.
  8. School of Medicine, Yokohama City University, Yokohama 236-0004, Kanagawa, Japan.

PMID: 35011631 PMCID: PMC8750621 DOI: 10.3390/cells11010070

Abstract

Amniotic epithelial stem cells (AESCs) are considered as potential alternatives to keratinocytes (KCs) in tissue-engineered skin substitutes used for treating skin damage. However, their clinical application is limited since similarities and distinctions between AESCs and KCs remain unclear. Herein, a transcriptomics analysis and functional evaluation were used to understand the commonalities and differences between AESCs and KCs. RNA-sequencing revealed that AESCs are involved in multiple epidermis-associated biological processes shared by KCs and show more similarity to early stage immature KCs than to adult KCs. However, AESCs were observed to be heterogeneous, and some possessed hybrid mesenchymal and epithelial features distinct from KCs. A functional evaluation revealed that AESCs can phagocytose melanosomes transported by melanocytes in both 2D and 3D co-culture systems similar to KCs, which may help reconstitute pigmented skin. The overexpression of TP63 and activation of NOTCH signaling could promote AESC stemness and improve their differentiation features, respectively, bridging the gap between AESCs and KCs. These changes induced the convergence of AESC cell fate with KCs. In future, modified reprogramming strategies, such as the use of small molecules, may facilitate the further modulation human AESCs for use in skin regeneration.

Keywords: TP63; amniotic epithelial stem cells; cell fate; keratinocytes; mesenchymal; reprogramming; skin regeneration; skin substitutes; stemness; transcriptomics

References

  1. Stem Cell Res Ther. 2020 Oct 15;11(1):439 - PubMed
  2. Nature. 2021 Jan;589(7842):448-455 - PubMed
  3. Stem Cells. 2005 Nov-Dec;23(10):1549-59 - PubMed
  4. Nat Cell Biol. 2021 Jul;23(7):692-703 - PubMed
  5. J Dermatol Sci. 2016 Jan;81(1):26-34 - PubMed
  6. Nat Struct Mol Biol. 2008 Aug;15(8):849-57 - PubMed
  7. Cytotherapy. 2013 Aug;15(8):1030-41 - PubMed
  8. Cell. 2016 Jun 30;166(1):21-45 - PubMed
  9. Eur Rev Med Pharmacol Sci. 2015 Dec;19(23):4627-35 - PubMed
  10. J Invest Dermatol. 2014 Jun;134(6):1527-1534 - PubMed
  11. Cell Stem Cell. 2020 Sep 3;27(3):396-412.e6 - PubMed
  12. Int J Mol Sci. 2017 Apr 07;18(4): - PubMed
  13. Differentiation. 1980;17(3):161-79 - PubMed
  14. World J Stem Cells. 2019 Sep 26;11(9):705-721 - PubMed
  15. Virchows Arch B Cell Pathol Incl Mol Pathol. 1989;58(2):129-45 - PubMed
  16. Am J Perinatol. 2001 Sep;18(6):299-312 - PubMed
  17. Dev Cell. 2019 May 6;49(3):361-374 - PubMed
  18. J Cell Biol. 1985 Apr;100(4):997-1009 - PubMed
  19. Nat Commun. 2020 Nov 6;11(1):5653 - PubMed
  20. Mol Med Rep. 2015 Jan;11(1):182-8 - PubMed
  21. J Invest Dermatol. 2014 Feb;134(2):335-344 - PubMed
  22. Cornea. 2006 Dec;25(10 Suppl 1):S53-8 - PubMed
  23. Nature. 2018 Sep;561(7722):243-247 - PubMed
  24. Development. 1994 Sep;120(9):2369-83 - PubMed
  25. Stem Cells Cloning. 2014 Mar 24;7:53-63 - PubMed
  26. J Invest Dermatol. 2010 Oct;130(10):2352-8 - PubMed
  27. Nat Commun. 2021 Jan 19;12(1):448 - PubMed
  28. Exp Dermatol. 2010 Aug;19(8):e282-5 - PubMed
  29. Eur J Cell Biol. 2007 Dec;86(11-12):731-46 - PubMed
  30. Cell Death Dis. 2013 Nov 07;4:e915 - PubMed
  31. Stem Cell Res Ther. 2016 Jul 29;7(1):98 - PubMed
  32. Nature. 1999 Apr 22;398(6729):714-8 - PubMed
  33. EMBO J. 2005 Oct 5;24(19):3504-15 - PubMed
  34. Exp Dermatol. 2008 May;17(5):418-26 - PubMed
  35. Cell Tissue Res. 1991 Nov;266(2):385-9 - PubMed
  36. Nat Commun. 2018 Mar 5;9(1):936 - PubMed
  37. EMBO J. 2001 Jul 2;20(13):3427-36 - PubMed
  38. Biol Reprod. 2007 Sep;77(3):577-88 - PubMed
  39. Stem Cell Reports. 2014 Aug 12;3(2):324-38 - PubMed
  40. Cell Stem Cell. 2011 May 6;8(5):525-37 - PubMed
  41. Science. 1999 Apr 30;284(5415):770-6 - PubMed
  42. Science. 2013 Feb 1;339(6119):580-4 - PubMed
  43. Nat Commun. 2020 Aug 25;11(1):4239 - PubMed
  44. J Invest Dermatol. 1995 Mar;104(3):405-10 - PubMed
  45. Exp Cell Res. 2008 Jun 10;314(9):1937-44 - PubMed
  46. Cell Rep. 2019 Apr 9;27(2):455-466.e5 - PubMed
  47. PLoS One. 2011 Feb 11;6(2):e17092 - PubMed
  48. Genes Dev. 2006 Nov 1;20(21):3022-35 - PubMed
  49. Histochem Cell Biol. 2008 Jun;129(6):705-33 - PubMed
  50. Artif Cells Nanomed Biotechnol. 2018 Jun;46(4):691-705 - PubMed
  51. Genes Dev. 2006 Apr 15;20(8):1028-42 - PubMed
  52. Cell. 1980 Apr;19(4):1033-42 - PubMed
  53. Sci Signal. 2020 Feb 11;13(618): - PubMed
  54. Curr Protoc Stem Cell Biol. 2010 Jan;Chapter 1:Unit 1E.3 - PubMed
  55. Artif Organs. 2012 Oct;36(10):911-9 - PubMed
  56. Eur Cell Mater. 2008 Apr 29;15:88-99 - PubMed

Publication Types

Grant support