Display options
Share it on

Biochim Biophys Acta Mol Basis Dis. 2022 Feb 01;1868(2):166304. doi: 10.1016/j.bbadis.2021.166304. Epub 2021 Nov 24.

SNAP25 mutation disrupts metabolic homeostasis, steroid hormone production and central neurobehavior.

Biochimica et biophysica acta. Molecular basis of disease

Xiao Hao, Bing Zhu, Pinglin Yang, Dachuan Dong, Peyman Sahbaie, Peter L Oliver, Wen-Jun Shen, Salman Azhar, Fredric B Kraemer

Affiliations

  1. Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States; Geriatric Research, Education, and Clinical Center, Veterans Administration Palo Alto Health Care System, Palo Alto, CA, United States; Department of Endocrinology, First Affiliated Hospital of the Medical College of Zhengzhou University, Zhengzhou, China.
  2. Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States; Geriatric Research, Education, and Clinical Center, Veterans Administration Palo Alto Health Care System, Palo Alto, CA, United States; Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
  3. Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States; Geriatric Research, Education, and Clinical Center, Veterans Administration Palo Alto Health Care System, Palo Alto, CA, United States; Department of Orthopedics, Second Affiliated Hospital of Xi'an, Jiaotong University, Xi'an, Shaanxi, China.
  4. Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States; Geriatric Research, Education, and Clinical Center, Veterans Administration Palo Alto Health Care System, Palo Alto, CA, United States.
  5. Geriatric Research, Education, and Clinical Center, Veterans Administration Palo Alto Health Care System, Palo Alto, CA, United States; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, United States.
  6. Medical Research Council Harwell Institute, Harwell Campus, Oxfordshire, United Kingdom.
  7. Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States; Geriatric Research, Education, and Clinical Center, Veterans Administration Palo Alto Health Care System, Palo Alto, CA, United States. Electronic address: [email protected].
  8. Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States; Geriatric Research, Education, and Clinical Center, Veterans Administration Palo Alto Health Care System, Palo Alto, CA, United States. Electronic address: [email protected].

PMID: 34826585 PMCID: PMC8759409 DOI: 10.1016/j.bbadis.2021.166304

Abstract

OBJECTIVE: SNAP-25 is one of the key proteins involved in formation of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes that are at the core of hormonal secretion and synaptic transmission. Altered expression or function of SNAP-25 can contribute to the development of neuropsychiatric and metabolic disease. A dominant negative (DN) I67T missense mutation in the b-isoform of SNAP-25 (DN-SNAP25mut) mice leads to abnormal interactions within the SNARE complex and impaired exocytotic vesicle recycling, yet the significance of this mutation to any association between the central nervous system and metabolic homeostasis is unknown.

METHODS: Here we explored aspects of metabolism, steroid hormone production and neurobehavior of DN-SNAP25mut mice.

RESULTS: DN-SNAP25mut mice displayed enhanced insulin function through increased Akt phosphorylation, alongside increased adrenal and gonadal hormone production. In addition, increased anxiety behavior and beigeing of white adipose tissue with increased energy expenditure were observed in mutants.

CONCLUSIONS: Our results show that SNAP25 plays an important role in bridging central neurological systems with peripheral metabolic homeostasis, and provide potential insights between metabolic disease and neuropsychiatric disorders in humans.

Copyright © 2021 Elsevier B.V. All rights reserved.

Keywords: Anxiety-like behavior; Beigeing; Brown adipose tissue; Glucose metabolism; Insulin secretion; Neurobehavior; SNAP25; Steroidogenesis; White adipose tissue

References

  1. J Mol Endocrinol. 2007 Feb;38(1-2):305-14 - PubMed
  2. PLoS Genet. 2008 Nov;4(11):e1000278 - PubMed
  3. Nature. 2008 Aug 21;454(7207):1000-4 - PubMed
  4. Eur J Cell Biol. 1996 Apr;69(4):351-9 - PubMed
  5. Brain. 2003 Feb;126(Pt 2):398-412 - PubMed
  6. Biophys J. 2001 Dec;81(6):3308-23 - PubMed
  7. Int J Obes (Lond). 2018 Jun;42(5):985-994 - PubMed
  8. Curr Obes Rep. 2015 Sep;4(3):303-10 - PubMed
  9. J Mol Biol. 1993 Sep 5;233(1):67-76 - PubMed
  10. Proc Natl Acad Sci U S A. 2015 Aug 4;112(31):E4326-35 - PubMed
  11. Int J Obes (Lond). 2010 Mar;34(3):407-19 - PubMed
  12. FEBS Lett. 1998 Mar 20;425(1):66-70 - PubMed
  13. Neuroscience. 2019 Nov 10;420:86-96 - PubMed
  14. J Psychosom Res. 2013 Feb;74(2):89-99 - PubMed
  15. Mol Psychiatry. 2006 Sep;11(9):878-86 - PubMed
  16. J Psychopharmacol. 2005 Nov;19(6 Suppl):56-65 - PubMed
  17. Nat Rev Neurosci. 2011 Sep 02;12(10):553-69 - PubMed
  18. Curr Biol. 2012 Feb 21;22(4):314-9 - PubMed
  19. Biochem J. 1999 Apr 1;339 ( Pt 1):159-65 - PubMed
  20. Cell Metab. 2009 Feb;9(2):203-9 - PubMed
  21. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1510-4 - PubMed
  22. J Psychiatr Res. 2008 Oct;42(12):963-70 - PubMed
  23. Proc Natl Acad Sci U S A. 2004 Mar 23;101(12):4112-7 - PubMed
  24. Cereb Cortex. 2014 Feb;24(2):364-76 - PubMed
  25. Am J Hum Genet. 2017 Nov 2;101(5):664-685 - PubMed
  26. Arch Clin Neuropsychol. 2008 Jul;23(4):467-74 - PubMed
  27. FEBS Lett. 1994 Sep 5;351(2):207-10 - PubMed
  28. J Mol Biol. 2018 Feb 16;430(4):479-490 - PubMed
  29. J Clin Psychiatry. 2015 Jan;76(1):e76-82 - PubMed
  30. Cell. 1993 Nov 5;75(3):409-18 - PubMed
  31. Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2431-6 - PubMed
  32. Endocrine. 2016 Jul;53(1):35-46 - PubMed
  33. Neuroscience. 2019 Nov 10;420:79-85 - PubMed
  34. Nat Med. 2001 Oct;7(10):1128-32 - PubMed
  35. J Cell Biol. 1989 Dec;109(6 Pt 1):3039-52 - PubMed
  36. Nature. 2009 Aug 27;460(7259):1154-8 - PubMed
  37. Front Physiol. 2019 Feb 05;10:37 - PubMed
  38. Mol Endocrinol. 2016 Feb;30(2):234-47 - PubMed
  39. Cell Metab. 2011 Sep 7;14(3):301-12 - PubMed
  40. J Comp Neurol. 1996 Apr 01;367(2):177-93 - PubMed
  41. Biol Psychiatry. 1998 Feb 15;43(4):239-43 - PubMed
  42. Am J Physiol Endocrinol Metab. 2019 Jan 1;316(1):E1-E15 - PubMed
  43. Diabetes. 1999 Dec;48(12):2367-73 - PubMed
  44. Cell. 2003 Jul 11;114(1):75-86 - PubMed
  45. Adipocyte. 2016 Jan 08;5(3):318-25 - PubMed
  46. Mol Metab. 2015 Mar 10;4(6):461-70 - PubMed
  47. Curr Opin Neurobiol. 2000 Jun;10(3):293-302 - PubMed
  48. Hum Mol Genet. 2009 Dec 1;18(23):4576-89 - PubMed
  49. Mol Aspects Med. 2019 Apr;66:80-93 - PubMed
  50. Diabetes. 2006 Feb;55(2):435-40 - PubMed
  51. Diabetes. 2020 Apr;69(4):798 - PubMed
  52. J Endocrinol. 1997 Apr;153(1):R5-10 - PubMed
  53. Clin Nutr. 2004 Aug;23(4):447-56 - PubMed
  54. J Cell Biol. 1995 Mar;128(6):1019-28 - PubMed
  55. PLoS One. 2010 Jun 30;5(6):e11391 - PubMed
  56. Sci Rep. 2019 Apr 25;9(1):6403 - PubMed
  57. Drugs. 2015 Apr;75(6):577-87 - PubMed
  58. Nature. 2008 Aug 21;454(7207):961-7 - PubMed
  59. J Neurosci. 2004 Oct 6;24(40):8796-805 - PubMed
  60. Pflugers Arch. 2011 Sep;462(3):443-54 - PubMed
  61. Nat Rev Endocrinol. 2014 Jan;10(1):24-36 - PubMed
  62. Transl Psychiatry. 2015 Jan 27;5:e500 - PubMed

Publication Types

Grant support