Display options
Share it on

Mol Ecol. 2022 Jan 07; doi: 10.1111/mec.16338. Epub 2022 Jan 07.

The evolutionary pathways for local adaptation in mountain hares.

Molecular ecology

Iwona Giska, João Pimenta, Liliana Farelo, Pierre Boursot, Klaus Hackländer, Hannes Jenny, Neil Reid, W Ian Montgomery, Paulo A Prodöhl, Paulo C Alves, José Melo-Ferreira

Affiliations

  1. CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal.
  2. Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal.
  3. BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal.
  4. Institut des Sciences de l'Évolution Montpellier (ISEM), Université Montpellier, CNRS, IRD, Montpellier, France.
  5. Institute of Wildlife Biology and Game Management, University of Natural Resources and Life Sciences, Vienna, Austria.
  6. Deutsche Wildtier Stiftung (German Wildlife Foundation), Hamburg, Germany.
  7. Department of Wildlife and Fishery Service Grison, Chur, Switzerland.
  8. Institute of Global Food Security (IGFS), School of Biological Sciences, Queen's University Belfast, Belfast, UK.

PMID: 34995383 DOI: 10.1111/mec.16338

Abstract

Understanding the evolution of local adaptations is a central aim of evolutionary biology and key for the identification of unique populations and lineages of conservation relevance. By combining RAD sequencing and whole-genome sequencing, we identify genetic signatures of local adaptation in mountain hares (Lepus timidus) from isolated and distinctive habitats of its wide distribution: Ireland, the Alps and Fennoscandia. Demographic modelling suggested that the split of these mountain hares occurred around 20 thousand years ago, providing the opportunity to study adaptive evolution over a short timescale. Using genome-wide scans, we identified signatures of extreme differentiation among hares from distinct geographic areas that overlap with area-specific selective sweeps, suggesting targets for local adaptation. Several identified candidate genes are associated with traits related to the uniqueness of the different environments inhabited by the three groups of mountain hares, including coat colour, ability to live at high altitudes and variation in body size. In Irish mountain hares, a variant of ASIP, a gene previously implicated in introgression-driven winter coat colour variation in mountain and snowshoe hares (L. americanus), may underlie brown winter coats, reinforcing the repeated nature of evolution at ASIP moulding adaptive seasonal colouration. Comparative genomic analyses across several hare species suggested that mountain hares' adaptive variants appear predominantly species-specific. However, using coalescent simulations, we also show instances where the candidate adaptive variants have been introduced via introgressive hybridization. Our study shows that standing adaptive variation, including that introgressed from other species, was a crucial component of the post-glacial dynamics of species.

© 2022 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.

Keywords: Lepus timidus ; adaptive evolution; genome scans; introgression

References

  1. Altuna, J. (1970). Hallazgo de una liebre artica (Lepus timidus) en el yacimiento prehistorico de Urtiga (Guipuzcoa). Munibe. Sociedad De Ciencias Naturales Aranzadi (San Sebastian), 22, 165-168. - PubMed
  2. Alves, P. C., Melo-Ferreira, J., Branco, M., Suchentrunk, F., Ferrand, N., & Harris, D. J. (2008). Evidence for genetic similarity of two allopatric European hares (Lepus corsicanus and L. castroviejoi) inferred from nuclear DNA sequences. Molecular Phylogenetics and Evolution, 46(3), 1191-1197. https://doi.org/10.1016/j.ympev.2007.11.010 - PubMed
  3. Angerbjörn, A. (2018). Lepus timidus, Mountain hare. In A. T. Smith, C. H. Johnston, P. C. Alves, & K. Hackländer (Eds.), Lagomorphs: Pikas, rabbits and hares of the world (pp. 212-216). John Hopkins University Press. - PubMed
  4. Angerbjörn, A., & Flux, J. (1995). Lepus timidus. Mammalian Species, 495, 1-11. https://doi.org/10.2307/3504302 - PubMed
  5. Angerbjörn, A., & Schai-Braun, S. C. (in press). Mountain hare Lepus timidus Linnaeus, 1758. In K. Hackländer, & F. E. Zachos (Eds.), Handbook of the mammals of Europe. Springer. - PubMed
  6. Arif, A., Terenzi, F., Potdar, A. A., Jia, J., Sacks, J., China, A., Halawani, D., Vasu, K., Li, X., Brown, J. M., Chen, J., Kozma, S. C., Thomas, G., & Fox, P. L. (2017). EPRS is a critical mTORC1-S6K1 effector that influences adiposity in mice. Nature, 542(7641), 357-361. https://doi.org/10.1038/nature21380 - PubMed
  7. Barrett, R. D. H., Laurent, S., Mallarino, R., Pfeifer, S. P., Xu, C. C. Y., Foll, M., Wakamatsu, K., Duke-Cohan, J. S., Jensen, J. D., & Hoekstra, H. E. (2019). Linking a mutation to survival in wild mice. Science, 363(6426), 499. https://doi.org/10.1126/science.aav3824 - PubMed
  8. Barrett, R. D. H., & Schluter, D. (2008). Adaptation from standing genetic variation. Trends in Ecology & Evolution, 23(1), 38-44. https://doi.org/10.1016/j.tree.2007.09.008 - PubMed
  9. Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120. https://doi.org/10.1093/bioinformatics/btu170 - PubMed
  10. Booker, T. R., Yeaman, S., & Whitlock, M. C. (2021). Global adaptation complicates the interpretation of genome scans for local adaptation. Evolution Letters, 5(1), 4-15. https://doi.org/10.1002/evl3.208 - PubMed
  11. Bouckaert, R., Vaughan, T. G., Barido-Sottani, J., Duchêne, S., Fourment, M., Gavryushkina, A., Heled, J., Jones, G., Kühnert, D., De Maio, N., Matschiner, M., Mendes, F. K., Müller, N. F., Ogilvie, H. A., du Plessis, L., Popinga, A., Rambaut, A., Rasmussen, D., Siveroni, I., … Drummond, A. J. (2019). BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLOS Computational Biology, 15(4), e1006650. https://doi.org/10.1371/journal.pcbi.1006650 - PubMed
  12. Carneiro, M., Hu, D., Archer, J., Feng, C., Afonso, S., Chen, C., & Andersson, L. (2017). Dwarfism and altered craniofacial development in rabbits is caused by a 12.1 kb deletion at the HMGA2 Locus. Genetics, 205(2), 955-965. https://doi.org/10.1534/genetics.116.196667 - PubMed
  13. Carneiro, M., Rubin, C.-J., Di Palma, F., Albert, F. W., Alföldi, J., Barrio, A. M., Pielberg, G., Rafati, N., Sayyab, S., Turner-Maier, J., Younis, S., Afonso, S., Aken, B., Alves, J. M., Barrell, D., Bolet, G., Boucher, S., Burbano, H. A., Campos, R., … Andersson, L. (2014). Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science, 345(6200), 1074-1079. https://doi.org/10.1126/science.1253714 - PubMed
  14. Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A., & Cresko, W. A. (2013). Stacks: an analysis tool set for population genomics. Molecular Ecology, 22(11), 3124-3140. https://doi.org/10.1111/mec.12354 - PubMed
  15. Chang, C. C., Chow, C. C., Tellier, L. C. A. M., Vattikuti, S., Purcell, S. M., & Lee, J. J. (2015). Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience, 4, 1-16. https://doi.org/10.1186/s13742-015-0047-8 - PubMed
  16. Coates, D. J., Byrne, M., & Moritz, C. (2018). Genetic diversity and conservation units: Dealing with the species-population continuum in the age of genomics. Frontiers in Ecology and Evolution, 6(165), 1-13. https://doi.org/10.3389/fevo.2018.00165 - PubMed
  17. Cruickshank, T. E., & Hahn, M. W. (2014). Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Molecular Ecology, 23(13), 3133-3157. https://doi.org/10.1111/mec.12796 - PubMed
  18. Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9(8), 772. https://doi.org/10.1038/nmeth.2109 - PubMed
  19. Dietz, A. J., Wohner, C., & Kuenzer, C. (2012). European snow cover characteristics between 2000 and 2011 derived from improved MODIS daily snow cover products. Remote Sensing, 4(8), 2432-2454. https://doi.org/10.3390/rs4082432 - PubMed
  20. Drummond, A. J., Ho, S. Y., Phillips, M. J., & Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. PloS Biology, 4(5), e88. https://doi.org/10.1371/journal.pbio.0040088 - PubMed
  21. Durand, E. Y., Patterson, N., Reich, D., & Slatkin, M. (2011). Testing for ancient admixture between closely related populations. Molecular Biology and Evolution, 28(8), 2239-2252. https://doi.org/10.1093/molbev/msr048 - PubMed
  22. Ehrich, D., Gaudeul, M., Assefa, A., Koch, M. A., Mummenhoff, K., Nemomissa, S., Consortium, I., & Brochmann, C. (2007). Genetic consequences of Pleistocene range shifts: contrast between the Arctic, the Alps and the East African mountains. Molecular Ecology, 16(12), 2542-2559. https://doi.org/10.1111/j.1365-294X.2007.03299.x - PubMed
  23. Ewing, G., & Hermisson, J. (2010). MSMS: a coalescent simulation program including recombination, demographic structure and selection at a single locus. Bioinformatics, 26(16), 2064-2065. https://doi.org/10.1093/bioinformatics/btq322 - PubMed
  24. Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C., & Foll, M. (2013). Robust demographic inference from genomic and SNP data. PLoS Genetics, 9(10), e1003905. https://doi.org/10.1371/journal.pgen.1003905 - PubMed
  25. Feder, J. L., Xie, X., Rull, J., Velez, S., Forbes, A., Leung, B., Dambroski, H., Filchak, K. E., & Aluja, M. (2005). Mayr, Dobzhansky, and Bush and the complexities of sympatric speciation in Rhagoletis. Proceedings of the National Academy of Sciences USA, 102(Suppl 1), 6573-6580. https://doi.org/10.1073/pnas.0502099102 - PubMed
  26. Ferreira, M. S., Jones, M. R., Callahan, C. M., Farelo, L., Tolesa, Z., Suchentrunk, F., Boursot, P., Mills, L. S., Alves, P. C., Good, J. M., & Melo-Ferreira, J. (2021). The Legacy of Recurrent Introgression during the Radiation of Hares. Systematic Biology, 70(3), 593-607. https://doi.org/10.1093/sysbio/syaa088 - PubMed
  27. Fontanesi, L., Forestier, L., Allain, D., Scotti, E., Beretti, F., Deretz-Picoulet, S., Pecchioli, E., Vernesi, C., Robinson, T. J., Malaney, J. L., Russo, V., & Oulmouden, A. (2010). Characterization of the rabbit agouti signaling protein (ASIP) gene: transcripts and phylogenetic analyses and identification of the causative mutation of the nonagouti black coat colour. Genomics, 95(3), 166-175. https://doi.org/10.1016/j.ygeno.2009.11.003 - PubMed
  28. Funk, W. C., McKay, J. K., Hohenlohe, P. A., & Allendorf, F. W. (2012). Harnessing genomics for delineating conservation units. Trends in Ecology & Evolution, 27(9), 489-496. https://doi.org/10.1016/j.tree.2012.05.012 - PubMed
  29. Gautier, M. (2015). Genome-wide scan for adaptive divergence and association with population-specific covariates. Genetics, 201(4), 1555-1579. https://doi.org/10.1534/genetics.115.181453 - PubMed
  30. Giska, I., Farelo, L., Pimenta, J., Seixas, F. A., Ferreira, M. S., Marques, J. P., Miranda, I., Letty, J., Jenny, H., Hackländer, K., Magnussen, E., & Melo-Ferreira, J. (2019a). Introgression drives repeated evolution of winter coat color polymorphism in hares. Proceedings of the National Academy of Sciences USA, 116(48), 24150-24156. https://doi.org/10.1073/pnas.1910471116 - PubMed
  31. Giska, I., Farelo, L., Pimenta, J., Seixas, F. A., Ferreira, M. S., Marques, J. P., Miranda, I., Letty, J., Jenny, H., Hackländer, K., Magnussen, E., & Melo-Ferreira, J. (2019b). Whole-genome sequence data of mountain hares (Lepus timidus) from different European populations. NCBI Sequence Read Archive. https://www.ncbi.nlm.nih.gov/bioproject/PRJNA564335 Deposited 6 September 2019 - PubMed
  32. Giska, I., Pimenta, J., Farelo, L., Boursot, P., Hackländer, K., Jenny, H., & Melo-Ferreira, J. (2021a). Data from: The evolutionary pathways for local adaptation in mountain hares. Dryad. https://doi.org/10.5061/dryad.fqz612jtt. Deposited - PubMed
  33. Giska, I., Pimenta, J., Farelo, L., Boursot, P., Hackländer, K., Jenny, H., & Melo-Ferreira, J. (2021b). Mountain hare RAD-Sequence and Whole Genome Sequence data. NCBI Sequence Read Archive. https://www.ncbi.nlm.nih.gov/bioproject/PRJNA783878 Deposited - PubMed
  34. Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., Kircher, M., & Paabo, S. (2010). A draft sequence of the Neandertal genome. Science, 328(5979), 710-722. - PubMed
  35. Gronau, I., Hubisz, M. J., Gulko, B., Danko, C. G., & Siepel, A. (2011). Bayesian inference of ancient human demography from individual genome sequences. Nature Genetics, 43(10), 1031-1034. https://doi.org/10.1038/ng.937 - PubMed
  36. Hackländer, K., & Jenny, H. (2011). One man’s meat is the other man’s poison: How global warming affects Lepus europaeus and Lepus timidus in the Alps. Mammalian Biology, 76S, 10. - PubMed
  37. Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95-98. - PubMed
  38. Hamala, T., & Savolainen, O. (2019). Genomic patterns of local adaptation under gene flow in Arabidopsis lyrata. Molecular Biology and Evolution, 36(11), 2557-2571. https://doi.org/10.1093/molbev/msz149 - PubMed
  39. Hamill, R. M., Doyle, D., & Duke, E. J. (2006). Spatial patterns of genetic diversity across European subspecies of the mountain hare, Lepus timidus L. Heredity, 97(5), 355-365. https://doi.org/10.1038/sj.hdy.6800880 - PubMed
  40. Hendricks, S. A., Schweizer, R. M., & Wayne, R. K. (2019). Conservation genomics illuminates the adaptive uniqueness of North American gray wolves. Conservation Genetics, 20(1), 29-43. https://doi.org/10.1007/s10592-018-1118-z - PubMed
  41. Hivert, V., Leblois, R., Petit, E. J., Gautier, M., & Vitalis, R. (2018). Measuring genetic differentiation from pool-seq data. Genetics, 210(1), 315. https://doi.org/10.1534/genetics.118.300900 - PubMed
  42. Hoban, S., Kelley, J. L., Lotterhos, K. E., Antolin, M. F., Bradburd, G., Lowry, D. B., Poss, M. L., Reed, L. K., Storfer, A., & Whitlock, M. C. (2016). Finding the genomic basis of local adaptation: pitfalls, practical solutions, and future directions. The American Naturalist, 188(4), 379-397. https://doi.org/10.1086/688018 - PubMed
  43. Hoekstra, H. E. (2006). Genetics, development and evolution of adaptive pigmentation in vertebrates. Heredity, 97(3), 222-234. https://doi.org/10.1038/sj.hdy.6800861 - PubMed
  44. Hoelzel, A. R., Bruford, M. W., & Fleischer, R. C. (2019). Conservation of adaptive potential and functional diversity. Conservation Genetics, 20(1), 1-5. https://doi.org/10.1007/s10592-019-01151-x - PubMed
  45. Jackman, S. D., Vandervalk, B. P., Mohamadi, H., Chu, J., Yeo, S., Hammond, S. A., Jahesh, G., Khan, H., Coombe, L., Warren, R. L., & Birol, I. (2017). ABySS 2.0: resource-efficient assembly of large genomes using a Bloom filter. Genome Research, 27(5), 768-777. https://doi.org/10.1101/gr.214346.116 - PubMed
  46. Jones, M. R., Mills, L. S., Alves, P. C., Callahan, C. M., Alves, J. M., Lafferty, D. J. R., Jiggins, F. M., Jensen, J. D., Melo-Ferreira, J., & Good, J. M. (2017). Whole exome and whole genome sequencing of hares and jackrabbits (genus Lepus). NCBI Sequence Read Archive. https://www.ncbi.nlm.nih.gov/bioproject/PRJNA420081 Deposited 28 November 2017 - PubMed
  47. Jones, M. R., Mills, L. S., Alves, P. C., Callahan, C. M., Alves, J. M., Lafferty, D. J. R., Jiggins, F. M., Jensen, J. D., Melo-Ferreira, J., & Good, J. M. (2018). Adaptive introgression underlies polymorphic seasonal camouflage in snowshoe hares. Science, 360(6395), 1355-1358. https://doi.org/10.1126/science.aar5273 - PubMed
  48. Jones, P., Chase, K., Martin, A., Davern, P., Ostrander, E. A., & Lark, K. G. (2008). Single-nucleotide-polymorphism-based association mapping of dog stereotypes. Genetics, 179(2), 1033-1044. https://doi.org/10.1534/genetics.108.087866 - PubMed
  49. Kerns, J. A., Newton, J., Berryere, T. G., Rubin, E. M., Cheng, J.-F., Schmutz, S. M., & Barsh, G. S. (2004). Characterization of the dog Agouti gene and a nonagoutimutation in German Shepherd Dogs. Mammalian Genome, 15(10), 798-808. https://doi.org/10.1007/s00335-004-2377-1 - PubMed
  50. Kofler, R., Orozco-terWengel, P., De Maio, N., Pandey, R. V., Nolte, V., Futschik, A., Kosiol, C., & Schlötterer, C. (2011). PoPoolation: A toolbox for population genetic analysis of next generation sequencing data from pooled individuals. PLoS One, 6(1), e15925. https://doi.org/10.1371/journal.pone.0015925 - PubMed
  51. Kofler, R., Pandey, R. V., & Schlötterer, C. (2011). PoPoolation2: Identifying differentiation between populations using sequencing of pooled DNA samples (Pool-Seq). Bioinformatics, 27, 3435-3436. https://doi.org/10.1093/bioinformatics/btr589 - PubMed
  52. Korneliussen, T. S., Albrechtsen, A., & Nielsen, R. (2014). ANGSD: Analysis of next generation sequencing data. BMC Bioinformatics, 15(1), 356. https://doi.org/10.1186/s12859-014-0356-4 - PubMed
  53. Lefort, V., Desper, R., & Gascuel, O. (2015). FastME 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program. Molecular Biology and Evolution, 32(10), 2798-2800. https://doi.org/10.1093/molbev/msv150 - PubMed
  54. Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14), 1754-1760. https://doi.org/10.1093/bioinformatics/btp324 - PubMed
  55. Lopez-Martinez, N. (1980). Les lagomorphs (Mammalia) du pléistocène supérieur de Jaurens. Nouvelles Archives Du Museum D'histoire Naturelle De Lyon, 18, 5-16. - PubMed
  56. Ma, Y., Ding, X., Qanbari, S., Weigend, S., Zhang, Q., & Simianer, H. (2015). Properties of different selection signature statistics and a new strategy for combining them. Heredity, 115(5), 426-436. https://doi.org/10.1038/hdy.2015.42 - PubMed
  57. Malinsky, M., Svardal, H., Tyers, A. M., Miska, E. A., Genner, M. J., Turner, G. F., & Durbin, R. (2018). Whole-genome sequences of Malawi cichlids reveal multiple radiations interconnected by gene flow. Nature Ecology & Evolution, 2(12), 1940-1955. https://doi.org/10.1038/s41559-018-0717-x - PubMed
  58. Marboutin, E., & Peroux, R. (1995). Survival pattern of European hare in a decreasing population. Journal of Applied Ecology, 32, 809-816. https://doi.org/10.2307/2404820 - PubMed
  59. Marques, J. P., Boursot, P., Alves, P. C., & Melo-Ferreira, J. (2019). Genomic resources for L. castroviejoi, BioSample SAMN12640762. NCBI Sequence Read Archive. https://www.ncbi.nlm.nih.gov/biosample/SAMN12640762 Deposited 27 August 2019 - PubMed
  60. Marques, J. P., Seixas, F. A., Farelo, L., Callahan, C. M., Good, J. M., Montgomery, W. I., Reid, N., Alves, P. C., Boursot, P., & Melo-Ferreira, J. (2019). The annotated draft genome of the mountain hare (Lepus timidus). NCBI Sequence Read Archive. https://www.ncbi.nlm.nih.gov/bioproject/PRJNA561582 Deposited 22 August 2019 - PubMed
  61. Marques, J. P., Seixas, F. A., Farelo, L., Callahan, C. M., Good, J. M., Montgomery, W. I., Reid, N., Alves, P. C., Boursot, P., & Melo-Ferreira, J. (2020a). An annotated draft genome of the mountain hare (Lepus timidus). Genome Biology and Evolution, 12(1), 3656-3662. https://doi.org/10.1093/gbe/evz273 - PubMed
  62. Marques, J. P., Seixas, F. A., Farelo, L., Callahan, C. M., Good, J. M., Montgomery, W. I., Reid, N., Alves, P. C., Boursot, P., & Melo-Ferreira, J. (2020b). Data from: An annotated draft genome of the mountain hare (Lepus timidus). Dryad. https://doi.org/10.5061/dryad.j0zpc86bk. Deposited 28 October - PubMed
  63. Martinkova, N., McDonald, R. A., & Searle, J. B. (2007). Stoats (Mustela erminea) provide evidence of natural overland colonization of Ireland. Proceedings of the Royal Society B: Biological Sciences, 274(1616), 1387-1393. https://doi.org/10.1098/rspb.2007.0334 - PubMed
  64. Matiu, M., Crespi, A., Bertoldi, G., Carmagnola, C. M., Marty, C., Morin, S., Schöner, W., Cat Berro, D., Chiogna, G., De Gregorio, L., Kotlarski, S., Majone, B., Resch, G., Terzago, S., Valt, M., Beozzo, W., Cianfarra, P., Gouttevin, I., Marcolini, G., … Weilguni, V. (2021). Observed snow depth trends in the European Alps: 1971 to 2019. The Cryosphere, 15(3), 1343-1382. https://doi.org/10.5194/tc-15-1343-2021 - PubMed
  65. McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., & DePristo, M. A. (2010). The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20(9), 1297-1303. https://doi.org/10.1101/gr.107524.110 - PubMed
  66. Melo-Ferreira, J., Alves, P. C., Freitas, H., Ferrand, N., & Boursot, P. (2009). The genomic legacy from the extinct Lepus timidus to the three hare species of Iberia: contrast between mtDNA, sex chromosomes and autosomes. Molecular Ecology, 18(12), 2643-2658. https://doi.org/10.1111/j.1365-294X.2009.04221.x - PubMed
  67. Melo-Ferreira, J., Boursot, P., Carneiro, M., Esteves, P. J., Farelo, L., & Alves, P. C. (2012). Recurrent Introgression of Mitochondrial DNA Among Hares (Lepus spp.) revealed by Species-tree Inference and Coalescent Simulations. Systematic Biology, 61(3), 367-381. https://doi.org/10.1093/sysbio/syr114 - PubMed
  68. Melo-Ferreira, J., Boursot, P., Randi, E., Kryukov, A., Suchentrunk, F., Ferrand, N., & Alves, P. C. (2007). The rise and fall of the mountain hare (Lepus timidus) during Pleistocene glaciations: expansion and retreat with hybridization in the Iberian Peninsula. Molecular Ecology, 16(3), 605-618. https://doi.org/10.1111/j.1365-294X.2006.03166.x - PubMed
  69. Melo-Ferreira, J., Seixas, F. A., Cheng, E., Mills, L. S., & Alves, P. C. (2014). The hidden history of the snowshoe hare, Lepus americanus: extensive mitochondrial DNA introgression inferred from multilocus genetic variation. Molecular Ecology, 23(18), 4617-4630. https://doi.org/10.1111/mec.12886 - PubMed
  70. Mills, L. S., Bragina, E. V., Kumar, A. V., Zimova, M., Lafferty, D. J. R., Feltner, J., Davis, B. M., Hackländer, K., Alves, P. C., Good, J. M., Melo-Ferreira, J., Dietz, A., Abramov, A. V., Lopatina, N., & Fay, K. (2018). Winter color polymorphisms identify global hot spots for evolutionary rescue from climate change. Science, 359(6379), 1033-1036. https://doi.org/10.1126/science.aan8097 - PubMed
  71. Miranda, I., Giska, I., Farelo, L., Pimenta, J., Zimova, M., Bryk, J., & Melo-Ferreira, J. (2021). Museomics dissects the genetic basis for adaptive seasonal colouration in the least weasel. Molecular Biology and Evolution, 38(10), 4388-4402. https://doi.org/10.1093/molbev/msab177 - PubMed
  72. Mitchell-Jones, A., Amori, G., Bogdanowicz, W., Krystufek, B., Reijnders, P., Spitzenberger, F., & Zima, J. (1999). Atlas of European Mammals. Academic Press. - PubMed
  73. Montgomery, W. I., Provan, J., McCabe, A. M., & Yalden, D. W. (2014). Origin of British and Irish mammals: disparate post-glacial colonisation and species introductions. Quaternary Science Reviews, 98, 144-165. https://doi.org/10.1016/j.quascirev.2014.05.026 - PubMed
  74. Muster, C., & Berendonkschm, T. U. (2006). Divergence and diversity: lessons from an arctic-alpine distribution (ehr group, Lycosidae). Molecular Ecology, 15(10), 2921-2933. https://doi.org/10.1111/j.1365-294X.2006.02989.x - PubMed
  75. Nogués-Bravo, D., Rodríguez-Sánchez, F., Orsini, L., de Boer, E., Jansson, R., Morlon, H., Fordham, D. A., & Jackson, S. T. (2018). Cracking the Code of Biodiversity Responses to Past Climate Change. Trends in Ecology & Evolution, 33(10), 765-776. https://doi.org/10.1016/j.tree.2018.07.005 - PubMed
  76. Olazcuaga, L., Loiseau, A., Parrinello, H., Paris, M., Fraimout, A., Guedot, C., Diepenbrock, L. M., Kenis, M., Zhang, J., Chen, X., Borowiec, N., Facon, B., Vogt, H., Price, D. K., Vogel, H., Prud’homme, B., Estoup, A., & Gautier, M. (2020). A Whole-Genome Scan for Association with Invasion Success in the Fruit Fly Drosophila suzukii Using Contrasts of Allele Frequencies Corrected for Population Structure. Molecular Biology and Evolution, 37(8), 2369-2385. https://doi.org/10.1093/molbev/msaa098 - PubMed
  77. Pavlidis, P., Zivkovic, D., Stamatakis, A., & Alachiotis, N. (2013). SweeD: likelihood-based detection of selective sweeps in thousands of genomes. Molecular Biology and Evolution, 30(9), 2224-2234. https://doi.org/10.1093/molbev/mst112 - PubMed
  78. Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11(5), 1633-1644. https://doi.org/10.5194/hess-11-1633-2007 - PubMed
  79. Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S., & Hoekstra, H. E. (2012). Double Digest RADseq: An Inexpensive Method for De Novo SNP Discovery and Genotyping in Model and Non-Model Species. PLoS One, 7(5), e37135. https://doi.org/10.1371/journal.pone.0037135 - PubMed
  80. Pickrell, J. K., & Pritchard, J. K. (2012). Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genetics, 8(11), e1002967. https://doi.org/10.1371/journal.pgen.1002967 - PubMed
  81. Plummer, M. S., Best, N., Cowles, K., & Vines, K. (2006). CODA: Convergence diagnosis and output analysis for MCMC. R News, 6(1), 7-11. - PubMed
  82. Rambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior summarization in bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67(5), 901-904. https://doi.org/10.1093/sysbio/syy032 - PubMed
  83. Savolainen, O., Lascoux, M., & Merila, J. (2013). Ecological genomics of local adaptation. Nature Reviews Genetics, 14(11), 807-820. https://doi.org/10.1038/nrg3522 - PubMed
  84. Schmitt, T. (2017). Molecular Biogeography of the High Mountain Systems of Europe: An Overview. In J. Catalan, J. M. Ninot, & M. M. Aniz (Eds.), High mountain conservation in a changing world (pp. 63-74). Springer International Publishing. - PubMed
  85. Seixas, F. A. (2017). Genome admixture with massive mitochondrial DNA introgression in hares (Lepus spp.): the relative roles of demography and natural selection. PhD. University of Porto and University of Montpellier. - PubMed
  86. Seixas, F. A., Boursot, P., & Melo-Ferreira, J. (2017). The genomic impact of historical hybridization with massive mitochondrial DNA introgression in the Iberian hare (Lepus granatensis). NCBI Sequence Read Archive, Deposited 21 August 2017 https://www.ncbi.nlm.nih.gov/bioproject/PRJNA399194 - PubMed
  87. Seixas, F. A., Boursot, P., & Melo-Ferreira, J. (2018). The genomic impact of historical hybridization with massive mitochondrial DNA introgression. Genome Biology, 19(1), 91. https://doi.org/10.1186/s13059-018-1471-8 - PubMed
  88. Seixas, F. A., Boursot, P., & Melo-Ferreira, J. (2019). Data from: The genomic impact of historical hybridization with massive mitochondrial DNA introgression. Dryad. https://doi.org/10.5061/dryad.x95x69pd8. Deposited 24 October - PubMed
  89. Seixas, F. A., Marques, J. P., Boursot, P., Alves, P. C., & Melo-Ferreira, J. (2019a). Genomic resources for L. europaeus, BioSample, SAMN12618118. NCBI Sequence Read Archive. https://www.ncbi.nlm.nih.gov/biosample/SAMN12618118 Deposited 21 August 2019 - PubMed
  90. Seixas, F. A., Marques, J. P., Boursot, P., Alves, P. C., & Melo-Ferreira, J. (2019b). Genomic resources for L. europaeus, BioSample, SAMN12618122. NCBI Sequence Read Archive. https://www.ncbi.nlm.nih.gov/biosample/SAMN12618122 Deposited 21 August 2019 - PubMed
  91. Simpson, J. T., Wong, K., Jackman, S. D., Schein, J. E., Jones, S. J. M., & Birol, I. (2009). ABySS: a parallel assembler for short read sequence data. Genome Research, 19(6), 1117-1123. https://doi.org/10.1101/gr.089532.108 - PubMed
  92. Smith, S., Sandoval-Castellanos, E., Lagerholm, V. K., Napierala, H., Sablin, M., Von Seth, J., Fladerer, F. A., Germonpré, M., Wojtal, P., Miller, R., Stewart, J. R., & Dalén, L. (2017). Nonreceding hare lines: genetic continuity since the Late Pleistocene in European mountain hares (Lepus timidus). Biological Journal of the Linnean Society, 120(4), 891-908. https://doi.org/10.1093/biolinnean/blw009 - PubMed
  93. Soraggi, S., Wiuf, C., & Albrechtsen, A. (2018). Powerful Inference with the D-Statistic on Low-Coverage Whole-Genome Data. G3 Genes|genomes|genetics, 8(2), 551-566. https://doi.org/10.1534/g3.117.300192 - PubMed
  94. Stamatakis, A. (2015). Using RAxML to Infer Phylogenies. Current Protocols in Bioinformatics 51(1), 11-16. https://doi.org/10.1002/0471250953.bi0614s51 - PubMed
  95. Stewart, J. R., Lister, A. M., Barnes, I., & Dalen, L. (2010). Refugia revisited: individualistic responses of species in space and time. Proceedings of the Royal Society B: Biological Sciences, 277(1682), 661-671. https://doi.org/10.1098/rspb.2009.1272 - PubMed
  96. Teixeira, J. C., & Huber, C. D. (2021). The inflated significance of neutral genetic diversity in conservation genetics. Proceedings of the National Academy of Sciences USA, 118(10), e2015096118. https://doi.org/10.1073/pnas.2015096118 - PubMed
  97. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673-4680. https://doi.org/10.1093/nar/22.22.4673 - PubMed
  98. Vaughan, T. G., Kühnert, D., Popinga, A., Welch, D., & Drummond, A. J. (2014). Efficient Bayesian inference under the structured coalescent. Bioinformatics, 30(16), 2272-2279. https://doi.org/10.1093/bioinformatics/btu201 - PubMed
  99. Verity, R., Collins, C., Card, D. C., Schaal, S. M., Wang, L., & Lotterhos, K. E. (2017). minotaur: A platform for the analysis and visualization of multivariate results from genome scans with R Shiny. Molecular Ecology Resources, 17(1), 33-43. https://doi.org/10.1111/1755-0998.12579 - PubMed
  100. Vieira, F. G., Lassalle, F., Korneliussen, T. S., & Fumagalli, M. (2016). Improving the estimation of genetic distances from Next-Generation Sequencing data. Biological Journal of the Linnean Society, 117(1), 139-149. https://doi.org/10.1111/bij.12511 - PubMed
  101. Xu, Z., You, W., Zhou, Y., Chen, W., Wang, Y., & Shan, T. (2019). Cold-induced lipid dynamics and transcriptional programs in white adipose tissue. BMC Biology, 17(1), 74. https://doi.org/10.1186/s12915-019-0693-x - PubMed
  102. Yi, X., Liang, Y. U., Huerta-Sanchez, E., Jin, X., Cuo, Z. X. P., Pool, J. E., Xu, X., Jiang, H., Vinckenbosch, N., Korneliussen, T. S., Zheng, H., Liu, T., He, W., Li, K., Luo, R., Nie, X., Wu, H., Zhao, M., Cao, H., … Wang, J. (2010). Sequencing of 50 Human Exomes Reveals Adaptation to High Altitude. Science, 329(5987), 75. https://doi.org/10.1126/science.1190371 - PubMed
  103. Zimova, M., Hackländer, K., Good, J. M., Melo-Ferreira, J., Alves, P. C., & Mills, L. S. (2018). Function and underlying mechanisms of seasonal colour moulting in mammals and birds: what keeps them changing in a warming world? Biological Reviews, 93, 1478-1498. https://doi.org/10.1111/brv.12405 - PubMed
  104. Zimova, M., Mills, L. S., & Nowak, J. J. (2016). High fitness costs of climate change-induced camouflage mismatch. Ecology Letters, 19(3), 299-307. https://doi.org/10.1111/ele.12568 - PubMed

Publication Types

Grant support