Display options
Share it on

Front Physiol. 2011 Apr 06;2:11. doi: 10.3389/fphys.2011.00011. eCollection 2011.

Slowing of Electrical Activity in Ventricular Fibrillation is Not Associated with Increased Defibrillation Energies in the Isolated Rabbit Heart.

Frontiers in physiology

Jane C Caldwell, Francis L Burton, Stuart M Cobbe, Godfrey L Smith

Affiliations

  1. Institute of Cardiovascular and Medical Sciences, University of Glasgow Glasgow, UK.

PMID: 21519386 PMCID: PMC3078558 DOI: 10.3389/fphys.2011.00011

Abstract

Prolonged out-of-hospital ventricular fibrillation (VF) arrests are associated with reduced ECG dominant frequency (DF) and diminished defibrillation success. Partial reversal of ischemia increases ECG DF and improves defibrillation outcome. We have investigated the metabolic components of ischemia responsible for the decline in ECG DF and defibrillation success. Isolated Langendorff-perfused rabbit hearts were loaded with the voltage-sensitive dye RH237. Using a photodiode array, epicardial membrane potentials were recorded at 252 sites (15 mm × 15 mm) on the anterior surface of the left and right ventricles. Simultaneously, a global ECG was recorded. VF was induced by burst pacing, and after 60s, perfusion was either reduced to 6 ml/min or the perfusate composition changed to impose hypoxia (95% N(2)/5% CO(2)), pH 6.7 (80% O(2)/20% CO(2)), or hyperkalemia (8 mM). Using fast Fourier transform, power spectra were created from the optical signals and the global ECG. The optical power spectra were summated to give a global power spectrum (pseudoECG). At 600 s the minimum defibrillation voltage (MDV) was determined by step-up protocol. During VF, the ECG and pseudoECG DF were reduced by low-flow ischemia (9.0 ± 1.0 Hz, p < 0.01, n = 5) and raised [K(+)](o) (12.2 ± 1.3 Hz, p < 0.05, n = 7) compared to control (19.2 ± 1.5 Hz, n = 20), but were unaffected by acidic pH(o) (16.7 ± 1.1 Hz, n = 11) and hypoxia (14.0 ± 1.2 Hz, n = 10). In contrast, the MDV was raised by acidic pH (156.1 ± 26.4 V, p < 0.001) and hypoxia (154.1 ± 22.1 V, p < 0.01) compared to control (65.6 ± 2.3 V), but comparable changes were not observed in low-flow ischemia (61.0 ± 0.5 V) or raised [K(+)](o) (56 ± 3 V). In summary, different metabolites are responsible for the reduction in DF and the increase in defibrillation energy during ischemic VF.

Keywords: defibrillation; ischemia; optical mapping; ventricular fibrillation

References

  1. Ann Emerg Med. 1989 Nov;18(11):1181-5 - PubMed
  2. Circulation. 2004 Jul 6;110(1):10-5 - PubMed
  3. Circulation. 2003 Dec 23;108(25):3157-63 - PubMed
  4. Basic Res Cardiol. 2000 Oct;95(5):359-67 - PubMed
  5. Exp Physiol. 1992 Jan;77(1):165-75 - PubMed
  6. Circulation. 1990 Sep;82(3 Suppl):II2-12 - PubMed
  7. Circulation. 2002 May 28;105(21):2537-42 - PubMed
  8. Circ Res. 1991 May;68(5):1204-15 - PubMed
  9. J Am Coll Cardiol. 1997 Mar 15;29(4):817-24 - PubMed
  10. Am J Cardiol. 1981 Sep;48(3):455-9 - PubMed
  11. Circ Res. 1991 Jan;68(1):69-76 - PubMed
  12. J Physiol (Paris). 1980;76(2):97-106 - PubMed
  13. Can J Physiol Pharmacol. 2002 Dec;80(12):1145-57 - PubMed
  14. J Cardiovasc Electrophysiol. 2000 Jun;11(6):634-41 - PubMed
  15. Heart Rhythm. 2006 Oct;3(10):1210-20 - PubMed
  16. Circulation. 1990 May;81(5):1660-6 - PubMed
  17. J Cardiovasc Electrophysiol. 2005 Feb;16(2):205-16 - PubMed
  18. Circulation. 1992 Apr;85(4):1510-23 - PubMed
  19. Q J Med. 1992 Oct;85(306):761-9 - PubMed
  20. Circ Res. 1998 May 4;82(8):918-25 - PubMed
  21. Pacing Clin Electrophysiol. 1996 Feb;19(2):197-206 - PubMed
  22. J Cardiovasc Electrophysiol. 2007 Aug;18(8):854-61 - PubMed
  23. Resuscitation. 2005 Oct;67(1):75-80 - PubMed
  24. Crit Care Med. 1998 Aug;26(8):1397-408 - PubMed
  25. Cardiovasc Res. 2004 Jan 1;61(1):39-44 - PubMed
  26. J Electrocardiol. 1980;13(1):73-8 - PubMed
  27. Circulation. 1999 Dec 21-28;100(25):2534-40 - PubMed
  28. Exp Physiol. 2004 Mar;89(2):163-72 - PubMed
  29. Conf Proc IEEE Eng Med Biol Soc. 2006;2006:2280-3 - PubMed
  30. J Gen Physiol. 1979 Feb;73(2):199-218 - PubMed
  31. Am J Physiol. 1998 Aug;275(2):H551-61 - PubMed
  32. Pacing Clin Electrophysiol. 2005 Feb;28(2):97-101 - PubMed
  33. Eur Heart J. 1990 Feb;11(2):173-81 - PubMed
  34. Circ Res. 1987 Aug;61(2):157-65 - PubMed
  35. Ann Emerg Med. 2000 Dec;36(6):543-6 - PubMed
  36. Chest. 1997 Mar;111(3):584-9 - PubMed
  37. Circ Res. 2001 Dec 7;89(12):1216-23 - PubMed
  38. Cardiovasc Res. 1993 Nov;27(11):1954-60 - PubMed
  39. Crit Care Med. 1975 Jul-Aug;3(4):139-42 - PubMed
  40. Circ Res. 2000 Jan 7-21;86(1):86-93 - PubMed
  41. Crit Care Med. 1994 Nov;22(11):1827-34 - PubMed
  42. Am J Physiol Heart Circ Physiol. 2004 Mar;286(3):H909-17 - PubMed
  43. Cardiovasc Res. 1998 Aug;39(2):351-9 - PubMed
  44. J Mol Cell Cardiol. 1984 Mar;16(3):247-59 - PubMed
  45. Circ Res. 1987 Jan;60(1):93-101 - PubMed
  46. Pacing Clin Electrophysiol. 2000 Apr;23(4 Pt 1):504-11 - PubMed
  47. Am J Physiol Heart Circ Physiol. 2004 Jun;286(6):H2078-88 - PubMed
  48. Anesthesiology. 1993 Feb;78(2):343-52 - PubMed
  49. Circ Res. 1982 Nov;51(5):614-23 - PubMed
  50. Am J Physiol. 1983 Jun;244(6):H825-31 - PubMed
  51. J Cardiovasc Electrophysiol. 2006 Oct;17(10):1112-20 - PubMed
  52. Circ Res. 1983 Apr;52(4):442-50 - PubMed
  53. Crit Care Med. 2004 Jun;32(6):1352-7 - PubMed
  54. J Cardiovasc Electrophysiol. 2003 Jan;14(1):72-5 - PubMed
  55. JAMA. 2003 Mar 19;289(11):1389-95 - PubMed

Publication Types