Display options
Share it on

Clin Med Insights Cardiol. 2016 Jul 26;10:27-40. doi: 10.4137/CMC.S39708. eCollection 2016.

Computational Representations of Myocardial Infarct Scars and Implications for Arrhythmogenesis.

Clinical Medicine Insights. Cardiology

Adam J Connolly, Martin J Bishop

Affiliations

  1. Department of Imaging Sciences and Bioengineering, King's College London, St Thomas' Hospital, London, UK.

PMID: 27486348 PMCID: PMC4962962 DOI: 10.4137/CMC.S39708

Abstract

Image-based computational modeling is becoming an increasingly used clinical tool to provide insight into the mechanisms of reentrant arrhythmias. In the context of ischemic heart disease, faithful representation of the electrophysiological properties of the infarct region within models is essential, due to the scars known for arrhythmic properties. Here, we review the different computational representations of the infarcted region, summarizing the experimental measurements upon which they are based. We then focus on the two most common representations of the scar core (complete insulator or electrically passive tissue) and perform simulations of electrical propagation around idealized infarct geometries. Our simulations highlight significant differences in action potential duration and focal effective refractory period (ERP) around the scar, driven by differences in electrotonic loading, depending on the choice of scar representation. Finally, a novel mechanism for arrhythmia induction, following a focal ectopic beat, is demonstrated, which relies on localized gradients in ERP directly caused by the electrotonic sink effects of the neighboring passive scar.

Keywords: arrhythmia; computational modeling; infarct; monodomain; scar

References

  1. Heart Rhythm. 2016 Jan;13(1):262-73 - PubMed
  2. Clin Med Insights Cardiol. 2014 Sep 25;8(Suppl 1):1-13 - PubMed
  3. J Physiol. 2012 Sep 15;590(18):4537-51 - PubMed
  4. Circ Res. 2004 Oct 1;95(7):717-25 - PubMed
  5. Br J Pharmacol. 2011 Sep;164(2b):607-16 - PubMed
  6. Circulation. 1999 Nov 9;100(19):1992-2002 - PubMed
  7. JACC Cardiovasc Imaging. 2011 Feb;4(2):157-60 - PubMed
  8. IEEE Trans Biomed Eng. 1999 Jan;46(1):19-25 - PubMed
  9. J Am Coll Cardiol. 2013 May 21;61(20):2088-95 - PubMed
  10. Circulation. 2014 Jun 10;129(23):2426-35 - PubMed
  11. IEEE Trans Biomed Eng. 2015 Sep;62(9):2251-9 - PubMed
  12. Trends Cardiovasc Med. 2005 Oct;15(7):259-64 - PubMed
  13. Cardiovasc Res. 2008 Oct 1;80(1):9-19 - PubMed
  14. PLoS One. 2013 Jul 02;8(7):e68872 - PubMed
  15. Front Physiol. 2015 Oct 13;6:282 - PubMed
  16. J Cardiovasc Pharmacol. 2011 Jun;57(6):630-8 - PubMed
  17. IEEE Trans Biomed Eng. 2011 Apr;58(4):1066-75 - PubMed
  18. Cardiovasc Res. 2000 Oct;48(1):34-43 - PubMed
  19. Biophys J. 2011 Sep 21;101(6):1307-15 - PubMed
  20. Wiley Interdiscip Rev Syst Biol Med. 2010 Jul-Aug;2(4):489-506 - PubMed
  21. Heart Rhythm. 2010 Jan;7(1):57-64 - PubMed
  22. Heart Rhythm. 2014 Feb;11(2):175-81 - PubMed
  23. Circulation. 2012 Apr 17;125(15):1835-47 - PubMed
  24. Biophys J. 2007 Jun 1;92(11):4121-32 - PubMed
  25. Trends Mol Med. 2016 Feb;22(2):99-114 - PubMed
  26. Circulation. 2006 Sep 12;114(11):1134-6 - PubMed
  27. Circ Arrhythm Electrophysiol. 2014 Feb;7(1):175-7 - PubMed
  28. PLoS One. 2016 Mar 02;11(3):e0149342 - PubMed
  29. J Cardiovasc Electrophysiol. 1995 Oct;6(10 Pt 2):942-50 - PubMed
  30. Heart Rhythm. 2006 Jul;3(7):862-4 - PubMed
  31. Quant Imaging Med Surg. 2012 Jun;2(2):81-6 - PubMed
  32. Pflugers Arch. 2000 Dec;441(2-3):301-12 - PubMed
  33. Physiol Rev. 2007 Apr;87(2):425-56 - PubMed
  34. Circ Res. 2003 Sep 5;93(5):421-8 - PubMed
  35. Interface Focus. 2011 Jun 6;1(3):396-407 - PubMed
  36. Nat Commun. 2016 May 10;7:11437 - PubMed
  37. PLoS One. 2014 Oct 07;9(10):e109754 - PubMed
  38. J Mol Cell Cardiol. 2014 May;70:83-91 - PubMed
  39. Circ Res. 2012 Jul 20;111(3):301-11 - PubMed
  40. Biophys J. 1998 Jul;75(1):359-71 - PubMed
  41. Math Biosci. 2008 Jul-Aug;214(1-2):140-52 - PubMed
  42. Am J Physiol Heart Circ Physiol. 2013 May;304(9):H1240-52 - PubMed
  43. Circ Res. 1997 Jul;81(1):110-9 - PubMed
  44. JACC Cardiovasc Imaging. 2011 Feb;4(2):150-6 - PubMed
  45. Heart Rhythm. 2013 Aug;10(8):1109-16 - PubMed
  46. J Cardiovasc Electrophysiol. 2007 Aug;18(8):862-8 - PubMed
  47. Biophys J. 2010 Sep 8;99(5):1408-15 - PubMed
  48. J Electrocardiol. 2003;36 Suppl:69-74 - PubMed
  49. Europace. 2005 Sep;7 Suppl 2:10-20 - PubMed
  50. Am J Physiol Heart Circ Physiol. 2004 Apr;286(4):H1573-89 - PubMed
  51. J Cardiovasc Electrophysiol. 1999 Oct;10(10):1361-75 - PubMed
  52. Eur Heart J. 2016 Feb 14;37(7):594-609 - PubMed
  53. J Magn Reson Imaging. 2003 Oct;18(4):434-41 - PubMed
  54. Heart Rhythm. 2009 Jan;6(1):87-97 - PubMed
  55. J Mol Cell Cardiol. 2016 Feb;91:238-46 - PubMed
  56. Circulation. 1993 Sep;88(3):915-26 - PubMed
  57. IEEE Trans Biomed Eng. 2011 Dec;58(12):3483-6 - PubMed
  58. J Cardiovasc Electrophysiol. 2008 Feb;19(2):197-202 - PubMed
  59. Crit Rev Biomed Eng. 1993;21(1):1-77 - PubMed
  60. Am J Pathol. 1991 Oct;139(4):801-21 - PubMed
  61. PLoS One. 2011;6(6):e20310 - PubMed
  62. J Theor Biol. 2011 Sep 21;285(1):164-76 - PubMed

Publication Types

Grant support