Display options
Share it on

Biotechnol Biofuels. 2016 Aug 30;9(1):179. doi: 10.1186/s13068-016-0597-8. eCollection 2016.

Robust succinic acid production from crude glycerol using engineered Yarrowia lipolytica.

Biotechnology for biofuels

Cuijuan Gao, Xiaofeng Yang, Huaimin Wang, Cristina Perez Rivero, Chong Li, Zhiyong Cui, Qingsheng Qi, Carol Sze Ki Lin

Affiliations

  1. School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
  2. State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People's Republic of China.
  3. School of Life Science, Linyi University, Linyi, 276005 People's Republic of China.
  4. School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006 People's Republic of China.
  5. School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK.

PMID: 27579143 PMCID: PMC5004273 DOI: 10.1186/s13068-016-0597-8

Abstract

BACKGROUND: Integrating waste management with fuels and chemical production is considered to address the food waste problem and oil crisis. Approximately, 600 million tonnes crude glycerol is produced from the biodiesel industry annually, which is a top renewable feedstock for succinic acid production. To meet the increasing demand for succinic acid production, the development of more efficient and cost-effective production methods is urgently needed. Herein, we have proposed a new strategy for integration of both biodiesel and SA production in a biorefinery unit by construction of an aerobic yeast Yarrowia lipolytica with a deletion in the gene coding succinate dehydrogenase subunit 5.

RESULTS: Robust succinic acid production by an engineered yeast Y. lipolytica from crude glycerol without pre-treatment was demonstrated. Diversion of metabolic flow from tricarboxylic acid cycle led to the success in generating a succinic acid producer Y. lipolytica PGC01003. The fermentation media and conditions were optimized, which resulted in 43 g L(-1) succinic acid production from crude glycerol. Using the fed-batch strategy in 2.5 L fermenter, up to 160 g L(-1) SA was yielded, indicating the great industrial potential.

CONCLUSIONS: Inactivation of SDH5 in Y. lipolytica Po1f led to succinic acid accumulation and secretion significantly. To our best knowledge, this is the highest titer obtained in fermentation on succinic acid production. In addition, the performance of batch and fed-batch fermentation showed high tolerance and yield on biodiesel by-product crude glycerol. All these results indicated that PGC01003 is a promising microbial factorial cell for the highly efficient strategy solving the environmental problem in connection with the production of value-added product.

Keywords: Crude glycerol; Fed-batch fermentation; Metabolic engineering; Succinic acid; Yarrowia lipolytica

References

  1. FEMS Yeast Res. 2002 Aug;2(3):371-9 - PubMed
  2. Bioresour Technol. 2009 Apr;100(8):2425-9 - PubMed
  3. Appl Microbiol Biotechnol. 2008 Dec;81(3):459-64 - PubMed
  4. Crit Rev Microbiol. 2014 Aug;40(3):187-206 - PubMed
  5. J Ind Microbiol Biotechnol. 2007 Nov;34(11):689-700 - PubMed
  6. J Appl Microbiol. 2002;92(4):737-44 - PubMed
  7. Microb Cell Fact. 2014 Aug 27;13:98 - PubMed
  8. Appl Microbiol Biotechnol. 2009 Oct;84(5):847-65 - PubMed
  9. Appl Microbiol Biotechnol. 2009 Jan;81(6):1087-96 - PubMed
  10. J Biol Chem. 2004 Mar 5;279(10):9424-31 - PubMed
  11. Nat Biotechnol. 2013 Aug;31(8):734-40 - PubMed
  12. N Biotechnol. 2014 Jan 25;31(1):133-9 - PubMed
  13. Science. 2009 Aug 28;325(5944):1139-42 - PubMed
  14. Yeast. 2012 Oct;29(10):409-18 - PubMed
  15. PLoS One. 2013;8(1):e54144 - PubMed
  16. J Biotechnol. 2012 Oct 31;161(3):257-64 - PubMed
  17. Bioresour Technol. 2013 Dec;149:84-91 - PubMed
  18. Appl Microbiol Biotechnol. 2009 Jul;83(6):1027-34 - PubMed
  19. J Biotechnol. 2004 Apr 8;109(1-2):63-81 - PubMed
  20. Biotechnol Bioeng. 2010 Nov 1;107(4):673-82 - PubMed
  21. J Ind Microbiol Biotechnol. 2010 May;37(5):431-5 - PubMed
  22. Syst Appl Microbiol. 2004 Mar;27(2):135-8 - PubMed
  23. Appl Microbiol Biotechnol. 2014 Mar;98 (5):2003-13 - PubMed
  24. FEMS Microbiol Rev. 1997 Apr;19(4):219-37 - PubMed
  25. J Ind Microbiol Biotechnol. 2013 Dec;40(12 ):1461-75 - PubMed
  26. Lett Appl Microbiol. 2015 Jun;60(6):544-51 - PubMed
  27. Appl Microbiol Biotechnol. 2015 Feb;99(4):1675-86 - PubMed
  28. Annu Rev Biochem. 2003;72:77-109 - PubMed
  29. Appl Microbiol Biotechnol. 2013 Aug;97(16):7387-97 - PubMed
  30. Bioresour Technol. 2008 Apr;99(6):1736-42 - PubMed
  31. Appl Microbiol Biotechnol. 1997 Aug;48(2):232-5 - PubMed
  32. Nat Methods. 2009 May;6(5):343-5 - PubMed
  33. Appl Environ Microbiol. 1999 May;65(5):2260-3 - PubMed
  34. Bioresour Technol. 2014 Mar;156:232-9 - PubMed
  35. Enzyme Microb Technol. 2011 Apr 7;48(4-5):339-44 - PubMed
  36. Bioprocess Biosyst Eng. 2015 Jan;38(1):175-87 - PubMed
  37. Biotechnol Lett. 2009 Dec;31(12):1947-51 - PubMed

Publication Types