Display options
Share it on

Mol Ther Oncolytics. 2015 Jan 07;1:14006. doi: 10.1038/mto.2014.6. eCollection 2015.

Overcoming tumor resistance by heterologous adeno-poxvirus combination therapy.

Molecular therapy oncolytics

Markus Vähä-Koskela, Siri Tähtinen, Susanna Grönberg-Vähä-Koskela, Kristian Taipale, Dipongkor Saha, Maiju Merisalo-Soikkeli, Marko Ahonen, Noora Rouvinen-Lagerström, Mari Hirvinen, Ville Veckman, Sampsa Matikainen, Fang Zhao, Päivi Pakarinen, Jarmo Salo, Anna Kanerva, Vincenzo Cerullo, Akseli Hemminki

Affiliations

  1. Department of Pathology and Transplantation Laboratory, Cancer Gene Therapy Group, Haartman Institute, University of Helsinki , Helsinki, Finland.
  2. Division of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, Immunovirotherapy Group, University of Helsinki , Helsinki, Finland.
  3. Unit of Excellence for Immunotoxicology, Finnish Institute of Occupational Health , Helsinki, Finland.
  4. Advanced Microscopy Unit, Haartman Institute, University of Helsinki , Helsinki, Finland.
  5. Department of Obstetrics and Gynecology, Helsinki University Central Hospital , Helsinki, Finland.
  6. Division of General Thoracic and Esophageal Surgery, Department of Cardiothoracic Surgery, Helsinki University Central Hospital , Helsinki, Finland.
  7. Department of Pathology and Transplantation Laboratory, Cancer Gene Therapy Group, Haartman Institute, University of Helsinki, Helsinki, Finland; Department of Obstetrics and Gynecology, Helsinki University Central Hospital, Helsinki, Finland.
  8. Department of Pathology and Transplantation Laboratory, Cancer Gene Therapy Group, Haartman Institute, University of Helsinki, Helsinki, Finland; TILT Biotherapeutics Ltd, Helsinki, Finland.

PMID: 27119097 PMCID: PMC4782942 DOI: 10.1038/mto.2014.6

Abstract

Successful cancer control relies on overcoming resistance to cell death and on activation of host antitumor immunity. Oncolytic viruses are particularly attractive in this regard, as they lyse infected tumor cells and trigger robust immune responses during the infection. However, repeated injections of the same virus promote antiviral rather than antitumor immunity and tumors may mount innate antiviral defenses to restrict oncolytic virus replication. In this article, we have explored if alternating the therapy virus could circumvent these problems. We demonstrate in two virus-resistant animal models a substantial delay in antiviral immune- and innate cellular response induction by alternating injections of two immunologically distinct oncolytic viruses, adenovirus, and vaccinia virus. Our results are in support of clinical development of heterologous adeno-/vaccinia virus therapy of cancer.

References

  1. J Virol. 2009 Feb;83(4):1563-71 - PubMed
  2. Top HIV Med. 2010 Apr-May;18(2):35-6 - PubMed
  3. Methods Mol Biol. 2007;369:387-405 - PubMed
  4. Oncoimmunology. 2013 Aug 1;2(8):e26013 - PubMed
  5. Curr Pharm Biotechnol. 2012 Jul;13(9):1750-60 - PubMed
  6. Curr Cancer Drug Targets. 2007 Mar;7(2):133-9 - PubMed
  7. BMC Cancer. 2011 Feb 14;11:68 - PubMed
  8. Gene Ther. 2007 Oct;14(19):1380-8 - PubMed
  9. Mol Ther. 2010 May;18(5):888-95 - PubMed
  10. Cold Spring Harb Perspect Med. 2012 Dec 01;2(12):a007351 - PubMed
  11. Vaccine. 2010 Apr 19;28(18):3257-64 - PubMed
  12. Proc Natl Acad Sci U S A. 1991 May 1;88(9):4025-9 - PubMed
  13. Biochem J. 2010 Nov 1;431(3):321-36 - PubMed
  14. Mol Ther. 2012 Apr;20(4):749-58 - PubMed
  15. J Transl Med. 2010 Jan 29;8:10 - PubMed
  16. PLoS One. 2013 Jul 09;8(7):e68685 - PubMed
  17. Mol Ther. 2012 Apr;20(4):736-48 - PubMed
  18. Expert Rev Vaccines. 2010 Sep;9(9):1055-69 - PubMed
  19. Expert Opin Biol Ther. 2009 Sep;9(9):1163-76 - PubMed
  20. Mol Ther. 2012 Aug;20(8):1633-47 - PubMed
  21. J Immunol. 2007 Jun 1;178(11):6761-9 - PubMed
  22. J Clin Invest. 2007 Nov;117(11):3350-8 - PubMed
  23. J Virol. 2013 Feb;87(4):2363-6 - PubMed
  24. Mol Ther. 2014 Feb;22(2):420-9 - PubMed
  25. Vaccine. 2008 Nov 11;26(48):6108-18 - PubMed
  26. Clin Cancer Res. 2013 May 15;19(10):2734-44 - PubMed
  27. J Bacteriol. 1964 Jan;87:24-32 - PubMed
  28. J Urol. 2012 Dec;188(6):2391-7 - PubMed
  29. Clin Cancer Res. 2012 Dec 15;18(24):6679-89 - PubMed
  30. Gene Ther. 2005 Feb;12(3):211-24 - PubMed
  31. Mol Ther. 2002 Jun;5(6):695-704 - PubMed
  32. J Gene Med. 2009 Nov;11(11):966-77 - PubMed
  33. Cancer Res. 2010 Jun 1;70(11):4297-309 - PubMed
  34. J Cell Biochem. 2000 Apr;78(1):47-61 - PubMed
  35. Cancer Res. 2013 Feb 15;73(4):1265-75 - PubMed
  36. PLoS One. 2012;7(12):e50447 - PubMed
  37. Nat Med. 2012 Dec;18(12):1827-34 - PubMed
  38. Cancer Res. 2012 May 1;72(9):2327-38 - PubMed
  39. BMC Cancer. 2011 Oct 19;11:451 - PubMed
  40. Mol Ther. 2011 Oct;19(10):1858-66 - PubMed
  41. J Virol. 2007 Nov;81(22):12102-10 - PubMed
  42. Mol Ther. 2002 Feb;5(2):115-24 - PubMed
  43. Mol Ther. 2008 May;16(5):985-94 - PubMed
  44. Gene Ther. 2014 Feb;21(2):195-204 - PubMed
  45. Mol Pharm. 2011 Feb 7;8(1):12-28 - PubMed
  46. J Neurooncol. 2011 Sep;104(3):715-27 - PubMed
  47. PLoS One. 2013 Sep 11;8(9):e73759 - PubMed
  48. Clin Cancer Res. 2012 Jun 1;18(11):3015-21 - PubMed
  49. J Virol. 2014 Jun;88(11):6243-54 - PubMed

Publication Types