Display options
Share it on

Front Immunol. 2016 Dec 13;7:567. doi: 10.3389/fimmu.2016.00567. eCollection 2016.

Analysis of the Interaction between Globular Head Modules of Human C1q and Its Candidate Receptor gC1qR.

Frontiers in immunology

Lina Pednekar, Ansar A Pathan, Basudev Paudyal, Anthony G Tsolaki, Anuvinder Kaur, Suhair M Abozaid, Lubna Kouser, Haseeb A Khan, Ellinor I Peerschke, Mohamed H Shamji, Gudrun Stenbeck, Berhane Ghebrehiwet, Uday Kishore

Affiliations

  1. Biosciences, College of Health and Life Sciences, Brunel University London , London , UK.
  2. Department of Biochemistry, College of Science, King Saud University , Riyadh , Saudi Arabia.
  3. Department of Laboratory Medicine, Memorial Sloan-Kettering, Cancer Center , New York, NY , USA.
  4. Allergy and Clinical Immunology, National Heart and Lung Institute, Imperial College London , London , UK.
  5. Department of Medicine, State University of New York , Stony Brook, NY , USA.

PMID: 28018340 PMCID: PMC5153404 DOI: 10.3389/fimmu.2016.00567

Abstract

The heterotrimeric globular head (gC1q) domain of human C1q is made up of the C-terminal ends of the three individual chains, ghA, ghB, and ghC. A candidate receptor for the gC1q domain is a multi-functional pattern recognition protein, gC1qR. Since understanding of gC1qR and gC1q interaction could provide an insight into the pleiotropic functions of gC1qR, this study was undertaken to identify the gC1qR-binding site on the gC1q domain, using the recombinant ghA, ghB, and ghC modules and their substitution mutants. Our results show that ghA, ghB, and ghC modules can interact with gC1qR independently, thus reinforcing the notion of modularity within the gC1q domain of human C1q. Mutational analysis revealed that while Arg162 in the ghA module is central to interaction between gC1qR and C1q, a single amino acid substitution (arginine to glutamate) in residue 114 of the ghB module resulted in enhanced binding. Expression of gC1qR and C1q in adherent monocytes with or without pro-inflammatory stimuli was also analyzed by qPCR; it showed an autocrine/paracrine basis of C1q and gC1qR interaction. Microscopic studies revealed that C1q and gC1qR are colocalized on PBMCs. Cell proliferation assays indicated that ghA, ghB, and ghC modules were able to attenuate phytohemagglutinin-stimulated proliferation of PBMCs. Addition of gC1qR had an additive effect on the anti-proliferative effect of globular head modules. In summary, our results identify residues involved in C1q-gC1qR interaction and explain, to a certain level, their involvement on the immune cell surface, which is relevant for C1q-induced functions including inflammation, infection, and immunity.

Keywords: C1q; cell proliferation; gC1qR; globular head; protein–protein interaction

References

  1. J Immunol. 2004 Apr 1;172(7):4351-8 - PubMed
  2. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8552-7 - PubMed
  3. Int Immunopharmacol. 2003 Mar;3(3):299-310 - PubMed
  4. J Immunol. 1995 Sep 1;155(5):2614-9 - PubMed
  5. Immunol Lett. 2004 Sep;95(2):113-28 - PubMed
  6. Biochemistry. 2008 Dec 9;47(49):13093-102 - PubMed
  7. J Immunol. 2002 Mar 1;168(5):2441-8 - PubMed
  8. Genomics. 2005 Jul;86(1):100-11 - PubMed
  9. Front Immunol. 2012 Jan 06;2:92 - PubMed
  10. Front Immunol. 2012 Jan 06;2:93 - PubMed
  11. Mol Immunol. 2007 Mar;44(9):2228-34 - PubMed
  12. Proc Natl Acad Sci U S A. 2013 May 21;110(21):8650-5 - PubMed
  13. J Immunol. 2003 Jul 15;171(2):812-20 - PubMed
  14. Immunopharmacology. 2000 Aug;49(1-2):159-70 - PubMed
  15. Trends Immunol. 2004 Oct;25(10):551-61 - PubMed
  16. J Immunol. 1998 Apr 1;160(7):3534-42 - PubMed
  17. Biochem J. 1976 Apr 1;155(1):19-23 - PubMed
  18. Dev Comp Immunol. 2000 Sep-Oct;24(6-7):597-607 - PubMed
  19. Semin Hematol. 1994 Oct;31(4):320-8 - PubMed
  20. Hybridoma. 1996 Oct;15(5):333-42 - PubMed
  21. J Clin Invest. 1995 Apr;95(4):1569-78 - PubMed
  22. J Immunol. 1994 Jun 15;152(12):5896-901 - PubMed
  23. Immunol Rev. 2001 Apr;180:65-77 - PubMed
  24. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3572-7 - PubMed
  25. J Immunol. 1997 Aug 1;159(3):1429-36 - PubMed
  26. J Biol Chem. 2003 Nov 21;278(47):46974-82 - PubMed
  27. J Biol Chem. 1996 Oct 25;271(43):26739-44 - PubMed
  28. J Clin Invest. 2000 Nov;106(10):1239-49 - PubMed
  29. J Immunol. 2010 Jul 15;185(2):808-12 - PubMed
  30. J Biol Chem. 1996 May 31;271(22):13040-7 - PubMed
  31. Protein Cell. 2010 Nov;1(11):1033-49 - PubMed
  32. Innate Immun. 2012 Apr;18(2):350-63 - PubMed
  33. J Exp Med. 1994 Jun 1;179(6):1809-21 - PubMed
  34. Dev Comp Immunol. 2010 Aug;34(8):785-90 - PubMed
  35. Immunol Lett. 2010 Jul 8;131(2):139-50 - PubMed
  36. Eur J Cell Biol. 1991 Oct;56(1):58-67 - PubMed
  37. J Thromb Haemost. 2006 Sep;4(9):2035-42 - PubMed
  38. Mol Cell Endocrinol. 2008 Jul 16;289(1-2):67-76 - PubMed
  39. Biochem J. 1998 Jul 1;333 ( Pt 1):27-32 - PubMed
  40. Clin Immunol Immunopathol. 1990 Jan;54(1):148-60 - PubMed
  41. Immunobiology. 2002 Sep;205(4-5):421-32 - PubMed
  42. Immunopharmacology. 1999 May;42(1-3):15-21 - PubMed
  43. Adv Exp Med Biol. 2013;735:97-110 - PubMed
  44. Biochemistry. 2006 Apr 4;45(13):4093-104 - PubMed
  45. Immunobiology. 2002 Sep;205(4-5):355-64 - PubMed
  46. J Immunol. 2014 Jan 1;192(1):377-84 - PubMed
  47. J Biol Chem. 1993 May 15;268(14):10393-402 - PubMed
  48. J Biol Chem. 2010 Jun 18;285(25):19267-76 - PubMed
  49. J Gen Virol. 1998 Jul;79 ( Pt 7):1677-85 - PubMed

Publication Types

Grant support