Display options
Share it on
Full text links
Wiley

Eur J Neurosci. 1999 Feb;11(2):516-527.

Expression of unphosphorylated class III beta-tubulin isotype in neuroepithelial cells demonstrates neuroblast commitment and differentiation.

The European journal of neuroscience

Avila, Fanarraga, Zabala

PMID: 10051752

Abstract

Neuronal microtubules have unique stability properties achieved through developmental regulation at the expression and post-translational levels on tubulins and microtubule associated proteins. One of the most specialized tubulins specific for neurons is class-III beta-tubulin (also known as beta6-tubulin). Both the upregulation and the post-translational processing of class-III beta-tubulin are believed to be essential throughout neuronal differentiation. The present investigation documents the temporal and spatial patterns of class-III beta-tubulin expression throughout neurogenesis. For this study a novel polyclonal antiserum named U-beta6, specific to unphosphorylated class-III beta-tubulin has been developed, characterized and compared with its commercial homologue TuJ-1. Our experiments indicate that the two antibodies recognize different forms of class-III beta-tubulin both in vitro and in vivo. Biochemical data revealed that U-beta6 bound unphosphorylated soluble class-III beta-tubulin specifically, while TuJ-1 recognized both the phosphorylated and unphosphorylated forms of the denatured protein. In vivo U-beta6 was associated with neurogenesis and labelled newly committed CNS and PNS neuroblasts expressing neuroepithelial cytoskeletal (nestin and vimentin) and surface markers (the anti-ganglioside supernatant, A2B5 and the polysialic acid neural adhesion molecule, PSA-NCAM), as well as differentiating neurons. These studies with U-beta6 illustrate three main developmental steps in the neuronal lineage: the commitment of neuroepithelial cells to the lineage (U-beta6 +ve/TuJ-1 -ve cells); a differentiation stage (U-beta6 +ve/TuJ-1 +ve cells); and, finally, neuronal maturation correlating with a drop in unphosphorylated class-III beta-tubulin immunostaining levels. These investigations also conclude that U-beta6 is an earlier marker than TuJ-1 for the neuronal lineage in vivo, and it is thus the earliest neuronal lineage marker known so far.

Publication Types

LinkOut - more resources