Display options
Share it on

BMC Endocr Disord. 2004 Jun 11;4(1):1. doi: 10.1186/1472-6823-4-1.

Nutrient-stimulated insulin secretion in mouse islets is critically dependent on intracellular pH.

BMC endocrine disorders

Subhadra C Gunawardana, Jonathan V Rocheleau, W Steven Head, David W Piston

Affiliations

  1. Department of Molecular Physiology and Biophysics, 702 Light Hall, Vanderbilt University, Nashville, TN 37232, USA. [email protected]

PMID: 15193158 PMCID: PMC434517 DOI: 10.1186/1472-6823-4-1

Abstract

BACKGROUND: Many mechanistic steps underlying nutrient-stimulated insulin secretion (NSIS) are poorly understood. The influence of intracellular pH (pHi) on insulin secretion is widely documented, and can be used as an investigative tool. This study demonstrates previously unknown effects of pHi-alteration on insulin secretion in mouse islets, which may be utilized to correct defects in insulin secretion. METHODS: Different components of insulin secretion in mouse islets were monitored in the presence and absence of forced changes in pHi. The parameters measured included time-dependent potentiation of insulin secretion by glucose, and direct insulin secretion by different mitochondrial and non-mitochondrial secretagogues. Islet pHi was altered using amiloride, removal of medium Cl-, and changing medium pH. Resulting changes in islet pHi were monitored by confocal microscopy using a pH-sensitive fluorescent indicator. To investigate the underlying mechanisms of the effects of pHi-alteration, cellular NAD(P)H levels were measured using two-photon excitation microscopy (TPEM). Data were analyzed using Student's t test. RESULTS: Time-dependent potentiation, a function normally absent in mouse islets, can be unmasked by a forced decrease in pHi. The optimal range of pHi for NSIS is 6.4-6.8. Bringing islet pHi to this range enhances insulin secretion by all mitochondrial fuels tested, reverses the inhibition of glucose-stimulated insulin secretion (GSIS) by mitochondrial inhibitors, and is associated with increased levels of cellular NAD(P)H. CONCLUSIONS: Pharmacological alteration of pHi is a potential means to correct the secretory defect in non-insulin dependent diabetes mellitus (NIDDM), since forcing islet pHi to the optimal range enhances NSIS and induces secretory functions that are normally absent.

References

  1. Acta Endocrinol (Copenh). 1975 Jul;79(3):502-10 - PubMed
  2. Diabetes. 2001 Jun;50(6):1311-23 - PubMed
  3. Nature. 1980 Nov 13;288(5787):187-9 - PubMed
  4. Horm Metab Res. 1980 Jul;12(7):294-9 - PubMed
  5. Bioorg Med Chem Lett. 2001 Nov 19;11(22):2903-5 - PubMed
  6. J Mol Endocrinol. 1988 Jul;1(1):33-8 - PubMed
  7. Biochem J. 1978 Oct 15;176(1):217-32 - PubMed
  8. J Endocrinol. 1987 Aug;114(2):185-9 - PubMed
  9. J Biol Chem. 1999 Dec 24;274(52):36866-75 - PubMed
  10. J Biol Chem. 2002 Aug 23;277(34):30914-20 - PubMed
  11. Arch Biochem Biophys. 1996 Nov 15;335(2):229-44 - PubMed
  12. Am J Physiol Endocrinol Metab. 2003 Aug;285(2):E380-9 - PubMed
  13. Cytometry. 1993 Nov;14(8):916-21 - PubMed
  14. Cell Calcium. 1986 Dec;7(5-6):377-86 - PubMed
  15. Diabetes. 2002 Jan;51(1):105-13 - PubMed
  16. Diabetes. 2002 Feb;51 Suppl 1:S53-9 - PubMed
  17. Diabetes. 2002 Feb;51 Suppl 1:S60-7 - PubMed
  18. Diabetologia. 1985 Apr;28(4):233-6 - PubMed
  19. Fed Proc. 1984 Jun;43(9):2379-84 - PubMed
  20. Biochem Pharmacol. 1978 May 1;27(9):1321-4 - PubMed
  21. Diabetes. 1986 Jan;35(1):44-51 - PubMed
  22. Methods Enzymol. 1999;307:351-68 - PubMed
  23. Diabetologia. 1983 Jan;24(1):47-51 - PubMed
  24. Pharmacol Res. 1996 Mar;33(3):191-4 - PubMed
  25. Biochim Biophys Acta. 1986 May 29;886(3):448-56 - PubMed
  26. Am J Physiol. 1992 Jul;263(1 Pt 2):H276-84 - PubMed
  27. Diabetes. 1983 Jan;32(1):61-6 - PubMed
  28. Kidney Int. 1996 May;49(5):1314-9 - PubMed
  29. J Biol Chem. 1996 Feb 16;271(7):3647-51 - PubMed
  30. Biochem J. 1980 Sep 15;190(3):771-80 - PubMed
  31. Diabetes Metab Res Rev. 2002 Nov-Dec;18(6):451-63 - PubMed
  32. Endocrinology. 1996 May;137(5):1664-9 - PubMed
  33. J Exp Biol. 1994 Nov;196:419-38 - PubMed
  34. Int J Mol Med. 2000 Jun;5(6):625-9 - PubMed
  35. Acta Endocrinol (Copenh). 1980 Jan;93(1):54-60 - PubMed
  36. J Clin Invest. 1978 Apr;61(4):1034-43 - PubMed
  37. Biochem J. 1984 Mar 15;218(3):887-92 - PubMed
  38. Biochem J. 1991 Aug 15;278 ( Pt 1):49-56 - PubMed
  39. Arch Biochem Biophys. 1996 Nov 15;335(2):245-57 - PubMed
  40. Biochem J. 1986 Oct 1;239(1):199-204 - PubMed
  41. Diabetes. 1967 Jan;16(1):35-9 - PubMed
  42. Proc Natl Acad Sci U S A. 2000 May 9;97(10):5203-7 - PubMed
  43. Acta Diabetol Lat. 1976 Jan-Apr;13(1-2):20-4 - PubMed
  44. J Endocrinol. 2002 Feb;172(2):345-54 - PubMed
  45. Endocrinology. 1995 Sep;136(9):3942-8 - PubMed
  46. Horm Metab Res. 1995 Nov;27(11):477-81 - PubMed
  47. Biochem Pharmacol. 1988 Dec 15;37(24):4611-5 - PubMed
  48. Science. 2002 Mar 8;295(5561):1895-7 - PubMed
  49. Biochim Biophys Acta. 1989 Jul 11;1012(2):166-70 - PubMed
  50. J Clin Invest. 1992 Apr;89(4):1288-95 - PubMed
  51. Diabetes. 1997 Dec;46(12):1928-38 - PubMed
  52. Diabetes. 1992 Apr;41(4):438-43 - PubMed
  53. Acta Endocrinol (Copenh). 1975 Jul;79(3):511-34 - PubMed
  54. Endocrinology. 1979 Oct;105(4):980-7 - PubMed
  55. Biochem J. 1994 Oct 15;303 ( Pt 2):461-5 - PubMed
  56. Mol Cell Endocrinol. 1995 Jun;111(2):191-8 - PubMed
  57. Endocrinology. 1987 Sep;121(3):1017-24 - PubMed
  58. J Clin Invest. 1978 Oct;62(4):868-78 - PubMed
  59. Circ Res. 1994 Jun;74(6):1220-6 - PubMed
  60. Am J Physiol. 1998 Dec;275(6 Pt 2):H1937-47 - PubMed
  61. Pflugers Arch. 2003 Dec;447(3):305-11 - PubMed
  62. Am J Physiol. 1999 Oct;277(4 Pt 2):F493-7 - PubMed
  63. Proc Natl Acad Sci U S A. 1995 Nov 7;92(23):10728-32 - PubMed
  64. Am J Physiol. 1983 Jan;244(1):E3-18 - PubMed

Publication Types

Grant support