Display options
Share it on

Biotechnol Biofuels. 2012 Oct 11;5(1):76. doi: 10.1186/1754-6834-5-76.

Boosting the free fatty acid synthesis of Escherichia coli by expression of a cytosolic Acinetobacter baylyi thioesterase.

Biotechnology for biofuels

Yanning Zheng, Lingling Li, Qiang Liu, Wen Qin, Jianming Yang, Yujin Cao, Xinglin Jiang, Guang Zhao, Mo Xian

Affiliations

  1. Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China. [email protected].

PMID: 23057831 PMCID: PMC3524773 DOI: 10.1186/1754-6834-5-76

Abstract

BACKGROUND: Thioesterases remove the fatty acyl moiety from the fatty acyl-acyl carrier proteins (ACPs), releasing them as free fatty acids (FFAs), which can be further used to produce a variety of fatty acid-based biofuels, such as biodiesel, fatty alcohols and alkanes. Thioesterases play a key role in the regulation of the fatty acid synthesis in Escherichia coli. Therefore, exploring more promising thioesterases will contribute to the development of industrial microbial lipids production.

RESULTS: We cloned and expressed a cytosolic Acinetobacter baylyi thioesterase ('AcTesA) in E. coli by deleting its leader sequence. Protein sequence alignment, structure modeling and site-directed mutagenesis demonstrated that Ser10, Gly48, Asn77, Asp158 and His161 residues composed the active centre of 'AcTesA. The engineered strain that overexpressed 'AcTesA achieved a FFAs titer of up to 501.2 mg/L in shake flask, in contrast to only 20.5 mg/L obtained in wild-type E. coli, demonstrating that the expression of 'AcTesA indeed boosted the synthesis of FFAs. The 'AcTesA exhibited a substrate preference towards the C8-C16 acyl groups, with C14:0, C16:1, C12:0 and C8:0 FFAs being the top four components. Optimization of expression level of 'AcTesA made the FFAs production increase to 551.3 mg/L. The FFAs production further increased to 716.1 mg/L by optimization of the culture medium. Fed-batch fermentation was also carried out to evaluate the FFAs production in a scaleable process. Finally, 3.6 g/L FFAs were accumulated within 48 h, and a maximal FFAs yield of 6.1% was achieved in 12-16 h post induction.

CONCLUSIONS: For the first time, an A. baylyi thioesterase was cloned and solubly expressed in the cytosol of E. coli. This leaderless thioesterase ('AcTesA) was found to be capable of enhancing the FFAs production of E. coli. Without detailed optimization of the strain and fermentation, the finally achieved 3.6 g/L FFAs is encouraging. In addition, 'AcTesA exhibited different substrate specificity from other thioesterases previously reported, and can be used to supply the fatty acid-based biofuels with high quality of FFAs. Altogether, this study provides a promising thioesterase for FFAs production, and is of great importance in enriching the library of useful thioesterases.

References

  1. Metab Eng. 2011 Nov;13(6):713-22 - PubMed
  2. Biotechnol Bioeng. 2010 Jun 1;106(2):193-202 - PubMed
  3. Metab Eng. 2008 Nov;10(6):333-9 - PubMed
  4. Nucleic Acids Res. 1989 Aug 25;17(16):6545-51 - PubMed
  5. PLoS One. 2012;7(4):e33509 - PubMed
  6. Nature. 2010 Jan 28;463(7280):559-62 - PubMed
  7. Protein Eng. 1997 Jan;10(1):1-6 - PubMed
  8. Protein Expr Purif. 2005 Jun;41(2):252-8 - PubMed
  9. Science. 2010 Jul 30;329(5991):559-62 - PubMed
  10. Science. 1992 Jul 3;257(5066):72-4 - PubMed
  11. Biotechnol Biofuels. 2012 Mar 21;5(1):17 - PubMed
  12. J Biol Chem. 1991 Nov 5;266(31):20946-52 - PubMed
  13. Appl Microbiol Biotechnol. 2001 Mar;55(2):205-9 - PubMed
  14. J Chromatogr A. 2011 Nov 11;1218(45):8289-93 - PubMed
  15. BMC Plant Biol. 2007 Jan 03;7:1 - PubMed
  16. J Mol Biol. 2004 Jul 16;340(4):783-95 - PubMed
  17. Protein Expr Purif. 2003 Dec;32(2):194-201 - PubMed
  18. Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):6899-904 - PubMed
  19. Metab Eng. 2010 Jul;12(4):378-86 - PubMed
  20. J Bacteriol. 1997 May;179(9):2969-75 - PubMed
  21. Microb Cell Fact. 2011 May 18;10:36 - PubMed
  22. Biotechnol Biofuels. 2011 Dec 07;4:56 - PubMed
  23. J Bacteriol. 1994 Dec;176(23):7320-7 - PubMed
  24. J Biol Chem. 2000 Sep 15;275(37):28593-8 - PubMed
  25. Enzyme Microb Technol. 2011 Jun 10;49(1):44-51 - PubMed
  26. Biochem J. 2006 Jul 1;397(1):69-76 - PubMed
  27. J Biol Chem. 1995 Mar 3;270(9):4216-9 - PubMed
  28. FEBS Lett. 2002 Sep 25;528(1-3):203-6 - PubMed
  29. Appl Microbiol Biotechnol. 2010 Jun;87(1):271-80 - PubMed
  30. Protein Expr Purif. 2010 Feb;69(2):209-14 - PubMed
  31. J Ind Microbiol Biotechnol. 2011 Aug;38(8):919-25 - PubMed
  32. J Mol Biol. 2003 Jul 11;330(3):539-51 - PubMed
  33. Plant Physiol. 1996 Jan;110(1):203-10 - PubMed
  34. J Biol Chem. 1992 Sep 15;267(26):18488-92 - PubMed
  35. Appl Microbiol Biotechnol. 2011 Jul;91(2):435-46 - PubMed
  36. J Bacteriol. 1995 Jul;177(14):4121-30 - PubMed
  37. J Biol Chem. 1996 Feb 16;271(7):3417-9 - PubMed

Publication Types