Display options
Share it on

J Mol Signal. 2013 Oct 05;8(1):11. doi: 10.1186/1750-2187-8-11.

Mitochondrial H2O2 as an enable signal for triggering autophosphorylation of insulin receptor in neurons.

Journal of molecular signaling

Nadezhda A Persiyantseva, Tatiana P Storozhevykh, Yana E Senilova, Lubov R Gorbacheva, Vsevolod G Pinelis, Igor A Pomytkin

Affiliations

  1. Biosignal Ltd,, M, Gruzinskaya 29-153, 123557 Moscow, Russia. [email protected].

PMID: 24094269 PMCID: PMC3817577 DOI: 10.1186/1750-2187-8-11

Abstract

BACKGROUND: Insulin receptors are widely distributed in the brain, where they play roles in synaptic function, memory formation, and neuroprotection. Autophosphorylation of the receptor in response to insulin stimulation is a critical step in receptor activation. In neurons, insulin stimulation leads to a rise in mitochondrial H2O2 production, which plays a role in receptor autophosphorylation. However, the kinetic characteristics of the H2O2 signal and its functional relationships with the insulin receptor during the autophosphorylation process in neurons remain unexplored to date.

RESULTS: Experiments were carried out in culture of rat cerebellar granule neurons. Kinetic study showed that the insulin-induced H2O2 signal precedes receptor autophosphorylation and represents a single spike with a peak at 5-10 s and duration of less than 30 s. Mitochondrial complexes II and, to a lesser extent, I are involved in generation of the H2O2 signal. The mechanism by which insulin triggers the H2O2 signal involves modulation of succinate dehydrogenase activity. Insulin dose-response for receptor autophosphorylation is well described by hyperbolic function (Hill coefficient, nH, of 1.1±0.1; R2=0.99). N-acetylcysteine (NAC), a scavenger of H2O2, dose-dependently inhibited receptor autophosphorylation. The observed dose response is highly sigmoidal (Hill coefficient, nH, of 8.0±2.3; R2=0.97), signifying that insulin receptor autophosphorylation is highly ultrasensitive to the H2O2 signal. These results suggest that autophosphorylation occurred as a gradual response to increasing insulin concentrations, only if the H2O2 signal exceeded a certain threshold. Both insulin-stimulated receptor autophosphorylation and H2O2 generation were inhibited by pertussis toxin, suggesting that a pertussis toxin-sensitive G protein may link the insulin receptor to the H2O2-generating system in neurons during the autophosphorylation process.

CONCLUSIONS: In this study, we demonstrated for the first time that the receptor autophosphorylation occurs only if mitochondrial H2O2 signal exceeds a certain threshold. This finding provides novel insights into the mechanisms underlying neuronal response to insulin. The neuronal insulin receptor is activated if two conditions are met: 1) insulin binds to the receptor, and 2) the H2O2 signal surpasses a certain threshold, thus, enabling receptor autophosphorylation in all-or-nothing manner. Although the physiological rationale for this control remains to be determined, we propose that malfunction of mitochondrial H2O2 signaling may lead to the development of cerebral insulin resistance.

References

  1. Hoppe Seylers Z Physiol Chem. 1972 Jun;353(6):987-99 - PubMed
  2. Arch Biochem Biophys. 2009 Aug 1;488(1):69-75 - PubMed
  3. J Biol Chem. 1988 Feb 25;263(6):2969-80 - PubMed
  4. J Biol Chem. 2012 Aug 3;287(32):27255-64 - PubMed
  5. Cell Signal. 2004 Mar;16(3):323-31 - PubMed
  6. J Neurosci. 2000 Dec 15;20(24):8972-9 - PubMed
  7. J Biol Chem. 1997 Apr 11;272(15):10135-43 - PubMed
  8. J Mol Med (Berl). 1997 Apr;75(4):283-9 - PubMed
  9. J Biol Chem. 1995 Apr 7;270(14):8122-30 - PubMed
  10. J Neurosci. 1999 Sep 1;19(17):7300-8 - PubMed
  11. Neural Dev. 2010 Mar 15;5:7 - PubMed
  12. Biochem Biophys Res Commun. 1971 Aug 6;44(3):526-32 - PubMed
  13. J Neural Transm Suppl. 2001;(61):223-35 - PubMed
  14. Mol Cell Biol. 2004 Mar;24(5):1844-54 - PubMed
  15. J Biol Chem. 1975 Sep 25;250(18):7114-9 - PubMed
  16. J Neurochem. 2002 Mar;80(5):780-7 - PubMed
  17. FEBS Lett. 1971 Sep 15;17(1):11-13 - PubMed
  18. J Biol Chem. 2007 Oct 19;282(42):30523-34 - PubMed
  19. Proc Natl Acad Sci U S A. 2004 Jun 15;101(24):8852-7 - PubMed
  20. Endocrinology. 1991 Oct;129(4):2058-66 - PubMed
  21. J Mol Neurosci. 1998 Oct;11(2):151-64 - PubMed
  22. J Biol Chem. 1979 Apr 10;254(7):2214-20 - PubMed
  23. Bull Exp Biol Med. 2002 Jun;133(6):568-70 - PubMed
  24. Biochemistry. 1971 Dec 7;10(25):4763-70 - PubMed
  25. Diabetes. 2005 Feb;54(2):311-21 - PubMed
  26. J Biol Chem. 2007 Apr 20;282(16):11885-92 - PubMed
  27. FEBS Lett. 2000 Jun 16;475(2):121-6 - PubMed
  28. J Biol Chem. 2004 Feb 6;279(6):4127-35 - PubMed
  29. Nature. 1996 Feb 29;379(6568):840-4 - PubMed
  30. J Biol Chem. 2001 Jun 15;276(24):21938-42 - PubMed
  31. Am J Physiol Heart Circ Physiol. 2007 Feb;292(2):H758-66 - PubMed
  32. J Biol Chem. 2001 Dec 28;276(52):48662-9 - PubMed
  33. J Neurochem. 1990 May;54(5):1661-5 - PubMed
  34. Brain Res. 2003 Mar 28;967(1-2):152-60 - PubMed
  35. Brain Res. 2004 Mar 12;1000(1-2):32-9 - PubMed
  36. J Clin Invest. 2012 Apr;122(4):1316-38 - PubMed
  37. FEBS Lett. 1997 Oct 13;416(1):15-8 - PubMed
  38. FEBS Lett. 1972 Apr 15;22(1):57-60 - PubMed
  39. Neurosci Lett. 2001 Apr 20;302(2-3):141-5 - PubMed
  40. Trends Biochem Sci. 1996 Dec;21(12):460-6 - PubMed
  41. Biochem Biophys Res Commun. 1971 Mar 19;42(6):1016-23 - PubMed
  42. J Biol Chem. 2001 Jun 29;276(26):23357-61 - PubMed
  43. Biol Res. 2006;39(1):7-13 - PubMed
  44. J Biol Chem. 2001 Oct 26;276(43):39705-12 - PubMed
  45. J Alzheimers Dis. 2007 May;11(2):153-64 - PubMed
  46. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6840-4 - PubMed
  47. Biochem J. 2009 Jan 1;417(1):1-13 - PubMed
  48. J Biol Chem. 1994 Aug 19;269(33):21037-42 - PubMed
  49. J Biol Chem. 2001 Sep 14;276(37):34651-8 - PubMed
  50. Curr Drug Metab. 2008 Oct;9(8):686-96 - PubMed
  51. Science. 1994 Jan 7;263(5143):95-8 - PubMed
  52. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3237-40 - PubMed
  53. Biochem Pharmacol. 1978;27(22):2589-94 - PubMed
  54. FASEB J. 1999 Sep;13(12):1491-500 - PubMed
  55. J Biol Chem. 1994 Jan 7;269(1):1-4 - PubMed
  56. Cell Metab. 2009 Oct;10(4):260-72 - PubMed
  57. Biochem J. 1973 Jul;134(3):707-16 - PubMed
  58. Biochem J. 2009 Dec 23;425(2):313-25 - PubMed
  59. FASEB J. 1998 Jul;12(10):863-70 - PubMed
  60. J Neurochem. 2004 Jul;90(2):405-21 - PubMed
  61. Cell. 2004 Dec 17;119(6):873-87 - PubMed
  62. J Aging Res. 2012;2012:384017 - PubMed
  63. Pflugers Arch. 2000 Oct;440(6):941-7 - PubMed
  64. BMC Neurosci. 2007 Oct 08;8:84 - PubMed
  65. FEBS Lett. 1996 Nov 18;397(2-3):230-4 - PubMed
  66. Neuroscience. 2004;127(4):833-43 - PubMed
  67. J Biol Chem. 1948 Dec;176(3):1085-94 - PubMed
  68. Biochimie. 1985 Oct-Nov;67(10-11):1147-53 - PubMed
  69. BMC Cell Biol. 2002 May 31;3:12 - PubMed
  70. Biochem J. 2004 Jun 15;380(Pt 3):831-6 - PubMed
  71. J Neurochem. 2001 Oct;79(2):266-77 - PubMed
  72. Annu Rev Biochem. 1995;64:97-112 - PubMed
  73. Biochem Biophys Res Commun. 1998 Dec 18;253(2):295-9 - PubMed
  74. Brain Res. 1991 May 10;548(1-2):322-5 - PubMed
  75. J Neurochem. 1986 Sep;47(3):831-6 - PubMed

Publication Types