Display options
Share it on

Biomicrofluidics. 2013 Mar 26;7(2):26502. doi: 10.1063/1.4798471. eCollection 2013.

Development of vertical SU-8 microtubes integrated with dissolvable tips for transdermal drug delivery.

Biomicrofluidics

Zhuolin Xiang, Hao Wang, Aakanksha Pant, Giorgia Pastorin, Chengkuo Lee

Affiliations

  1. Department of Electrical and Computer Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore ; Department of Pharmacy, National University of Singapore, 3 Science Drive 24, Singapore 117543, Singapore.
  2. Department of Electrical and Computer Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore.
  3. Department of Pharmacy, National University of Singapore, 3 Science Drive 24, Singapore 117543, Singapore.

PMID: 24404018 PMCID: PMC3625238 DOI: 10.1063/1.4798471

Abstract

Polymer-based microneedles have drawn much attention in the transdermal drug delivery resulting from their flexibility and biocompatibility. Traditional fabrication approach deploys various kinds of molds to create sharp tips at the end of needles for the penetration purpose. This approach is usually time-consuming and expensive. In this study, we developed an innovative fabrication process to make biocompatible SU-8 microtubes integrated with biodissolvable maltose tips as novel microneedles for the transdermal drug delivery applications. These microneedles can easily penetrate the skin's outer barrier represented by the stratum corneum (SC) layer. The drug delivery device of mironeedles array with 1000 μm spacing between adjacent microneedles is proven to be able to penetrate porcine cadaver skins successfully. The maximum loading force on the individual microneedle can be as large as 7.36 ± 0.48N. After 9 min of the penetration, all the maltose tips are dissolved in the tissue. Drugs can be further delivered via these open biocompatible SU-8 microtubes in a continuous flow manner. The permeation patterns caused by the solution containing Rhodamine 110 at different depths from skin surface were characterized via a confocal microscope. It shows successful implementation of the microneedle function for fabricated devices.

References

  1. Nanomedicine. 2012 Feb;8(2):221-7 - PubMed
  2. Am J Trop Med Hyg. 2003 Mar;68(3):341-4 - PubMed
  3. Int J Pharm. 2009 Feb 23;368(1-2):109-15 - PubMed
  4. Int J Pharm. 2008 Dec 8;364(2):227-36 - PubMed
  5. Drug Deliv. 2010 May;17(4):187-207 - PubMed
  6. Eur J Pharm Biopharm. 2010 Oct;76(2):282-9 - PubMed
  7. J Drug Target. 2006 Jun;14(5):255-61 - PubMed
  8. Pharm Res. 2002 Jan;19(1):63-70 - PubMed
  9. J Pharm Sci. 2010 Apr;99(4):1931-41 - PubMed
  10. Biomaterials. 2012 Oct;33(30):7309-26 - PubMed
  11. Expert Opin Drug Deliv. 2009 Apr;6(4):343-54 - PubMed
  12. Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:7026-9 - PubMed
  13. J Pharm Sci. 2013 Apr;102(4):1209-21 - PubMed
  14. Recent Pat Drug Deliv Formul. 2011 Jan;5(1):11-23 - PubMed
  15. J Pharm Sci. 2008 Jul;97(7):2497-523 - PubMed
  16. Nat Med. 2010 Aug;16(8):915-20 - PubMed
  17. Biomed Opt Express. 2010 Jul 14;1(1):106-113 - PubMed
  18. Vaccine. 2012 Apr 26;30(20):3076-81 - PubMed
  19. J Pharm Sci. 2012 Mar;101(3):1021-7 - PubMed
  20. Opt Express. 2010 Aug 16;18(17):17967-73 - PubMed
  21. Biomaterials. 2011 Apr;32(11):3134-40 - PubMed
  22. J Pharm Pharmacol. 2012 Jan;64(1):11-29 - PubMed
  23. Biomed Microdevices. 2004 Sep;6(3):177-82 - PubMed
  24. Clin Vaccine Immunol. 2007 Apr;14(4):375-81 - PubMed
  25. Pharm Res. 2008 Jan;25(1):104-13 - PubMed
  26. Pharm Res. 2011 Jan;28(1):82-94 - PubMed
  27. Molecules. 2009 Sep 23;14(9):3754-79 - PubMed
  28. Biomed Microdevices. 2005 Sep;7(3):185-8 - PubMed
  29. Pharm Res. 2006 May;23(5):1008-19 - PubMed

Publication Types