Display options
Share it on

Cell Host Microbe. 2015 Feb 11;17(2):260-73. doi: 10.1016/j.chom.2015.01.001. Epub 2015 Feb 05.

The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes.

Cell host & microbe

Aleksandar D Kostic, Dirk Gevers, Heli Siljander, Tommi Vatanen, Tuulia Hyötyläinen, Anu-Maaria Hämäläinen, Aleksandr Peet, Vallo Tillmann, Päivi Pöhö, Ismo Mattila, Harri Lähdesmäki, Eric A Franzosa, Outi Vaarala, Marcus de Goffau, Hermie Harmsen, Jorma Ilonen, Suvi M Virtanen, Clary B Clish, Matej Orešič, Curtis Huttenhower, Mikael Knip, Ramnik J Xavier

Affiliations

  1. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA.
  2. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
  3. Children's Hospital, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland; Research Program Unit, Diabetes and Obesity, University of Helsinki, 00290 Helsinki, Finland.
  4. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Information and Computer Science, Aalto University School of Science, 02150 Espoo, Finland.
  5. Steno Diabetes Center, 2820 Gentofte, Denmark; VTT Technical Research Centre of Finland, 02044 Espoo, Finland.
  6. Department of Pediatrics, Jorvi Hospital, 02740 Espoo, Finland.
  7. Department of Pediatrics, University of Tartu, Estonia and Tartu University Hospital, 51014 Tartu, Estonia.
  8. Faculty of Pharmacy, University of Helsinki, 00290 Helsinki, Finland; VTT Technical Research Centre of Finland, 02044 Espoo, Finland.
  9. Department of Information and Computer Science, Aalto University School of Science, 02150 Espoo, Finland.
  10. Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA.
  11. Research Program Unit, Diabetes and Obesity, University of Helsinki, 00290 Helsinki, Finland.
  12. Department of Medical Microbiology, University Medical Center Groningen and University of Groningen, 9713 GZ Groningen, the Netherlands.
  13. Immunogenetics Laboratory, University of Turku, 20520 Turku, Finland; Department of Clinical Microbiology, University of Eastern Finland, 70211 Kuopio, Finland.
  14. Department of Lifestyle and Participation, National Institute for Health and Welfare, 00271 Helsinki, Finland; School of Health Sciences, University of Tampere, 33014 Tampere, Finland; Science Centre, Pirkanmaa Hospital District, 33521 Tampere, Finland.
  15. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA.
  16. Children's Hospital, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland; Research Program Unit, Diabetes and Obesity, University of Helsinki, 00290 Helsinki, Finland; Folkhälsan Research Center, 00290 Helsinki, Finland; Department of Pediatrics, Tampere University Hospital, 33521 Tampere, Finland.
  17. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Electronic address: [email protected].

PMID: 25662751 PMCID: PMC4689191 DOI: 10.1016/j.chom.2015.01.001

Abstract

Colonization of the fetal and infant gut microbiome results in dynamic changes in diversity, which can impact disease susceptibility. To examine the relationship between human gut microbiome dynamics throughout infancy and type 1 diabetes (T1D), we examined a cohort of 33 infants genetically predisposed to T1D. Modeling trajectories of microbial abundances through infancy revealed a subset of microbial relationships shared across most subjects. Although strain composition of a given species was highly variable between individuals, it was stable within individuals throughout infancy. Metabolic composition and metabolic pathway abundance remained constant across time. A marked drop in alpha-diversity was observed in T1D progressors in the time window between seroconversion and T1D diagnosis, accompanied by spikes in inflammation-favoring organisms, gene functions, and serum and stool metabolites. This work identifies trends in the development of the human infant gut microbiome along with specific alterations that precede T1D onset and distinguish T1D progressors from nonprogressors.

Copyright © 2015 Elsevier Inc. All rights reserved.

References

  1. Nature. 2008 Oct 23;455(7216):1109-13 - PubMed
  2. Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11971-5 - PubMed
  3. PLoS Biol. 2007 Jul;5(7):e177 - PubMed
  4. Free Radic Biol Med. 2012 Jan 1;52(1):151-9 - PubMed
  5. Nature. 2012 Aug 30;488(7413):621-6 - PubMed
  6. PLoS One. 2011;6(10):e25792 - PubMed
  7. JAMA. 2013 Jul 24;310(4):427-8 - PubMed
  8. Diabetes Metab. 2009 Nov;35(5):353-60 - PubMed
  9. J Infect Dis. 2008 Feb 1;197(3):435-8 - PubMed
  10. Science. 2013 Jul 5;341(6141):1237439 - PubMed
  11. Nat Methods. 2012 Aug;9(8):811-4 - PubMed
  12. ISME J. 2011 Jan;5(1):82-91 - PubMed
  13. ISME J. 2012 Aug;6(8):1621-4 - PubMed
  14. JAMA. 2013 Jun 19;309(23):2473-9 - PubMed
  15. Clin Chem Lab Med. 1999 Jan;37(1):29-32 - PubMed
  16. Cell Host Microbe. 2014 Mar 12;15(3):317-28 - PubMed
  17. J Exp Med. 2008 Dec 22;205(13):2975-84 - PubMed
  18. Nature. 2014 Jun 19;510(7505):417-21 - PubMed
  19. J Lipid Res. 2010 May;51(5):1101-12 - PubMed
  20. Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4578-85 - PubMed
  21. Mol Genet Metab. 2011 Aug;103(4):406-9 - PubMed
  22. Nat Rev Gastroenterol Hepatol. 2012 Oct;9(10):599-608 - PubMed
  23. Diabetes Care. 2010 Jun;33(6):1206-12 - PubMed
  24. Nature. 2012 Jun 14;486(7402):222-7 - PubMed
  25. Diabetologia. 1982 Mar;22(3):217-9 - PubMed
  26. PLoS Comput Biol. 2012;8(6):e1002358 - PubMed
  27. Science. 2013 Aug 2;341(6145):569-73 - PubMed
  28. Nat Methods. 2010 May;7(5):335-6 - PubMed
  29. Sci Transl Med. 2014 May 21;6(237):237ra65 - PubMed
  30. J Leukoc Biol. 2005 Apr;77(4):460-5 - PubMed
  31. Diabetes. 2008 Oct;57(10):2555-62 - PubMed
  32. Cell Host Microbe. 2009 Jan 22;5(1):8-12 - PubMed
  33. Cell. 2014 Aug 14;158(4):705-21 - PubMed
  34. J Immunol. 1999 Dec 15;163(12):6718-24 - PubMed
  35. PLoS One. 2013;8(5):e63950 - PubMed
  36. Cell. 2014 Jan 16;156(1-2):123-33 - PubMed
  37. Am J Physiol Gastrointest Liver Physiol. 2004 Jun;286(6):G1000-8 - PubMed
  38. Diabetes. 2005 Dec;54 Suppl 2:S125-36 - PubMed
  39. Nature. 2011 Apr 7;472(7341):57-63 - PubMed
  40. Korean J Gastroenterol. 2004 Mar;43(3):176-85 - PubMed
  41. Nat Biotechnol. 2013 Sep;31(9):814-21 - PubMed
  42. Carcinogenesis. 2007 Jan;28(1):215-22 - PubMed
  43. Lancet. 2008 May 24;371(9626):1777-82 - PubMed
  44. PLoS Comput Biol. 2012;8(7):e1002606 - PubMed
  45. Diabetes. 2005 Dec;54 Suppl 2:S25-31 - PubMed
  46. Diabetes. 2013 Apr;62(4):1238-44 - PubMed
  47. Nat Med. 2013 May;19(5):576-85 - PubMed
  48. Genome Biol. 2012;13(9):R79 - PubMed
  49. Cell Host Microbe. 2014 Mar 12;15(3):382-92 - PubMed
  50. Diabetol Metab Syndr. 2011 Sep 02;3:22 - PubMed
  51. Nature. 2009 Jan 22;457(7228):480-4 - PubMed
  52. Nature. 2012 Jun 14;486(7402):207-14 - PubMed
  53. Cell Host Microbe. 2013 Nov 13;14(5):559-70 - PubMed

MeSH terms

Publication Types

Grant support