Display options
Share it on

Arterioscler Thromb Vasc Biol. 2015 Jul;35(7):1712-22. doi: 10.1161/ATVBAHA.115.305513. Epub 2015 May 14.

Systems Genetics Analysis of Genome-Wide Association Study Reveals Novel Associations Between Key Biological Processes and Coronary Artery Disease.

Arteriosclerosis, thrombosis, and vascular biology

Sujoy Ghosh, Juan Vivar, Christopher P Nelson, Christina Willenborg, Ayellet V Segrè, Ville-Petteri Mäkinen, Majid Nikpay, Jeannette Erdmann, Stefan Blankenberg, Christopher O'Donnell, Winfried März, Reijo Laaksonen, Alexandre F R Stewart, Stephen E Epstein, Svati H Shah, Christopher B Granger, Stanley L Hazen, Sekar Kathiresan, Muredach P Reilly, Xia Yang, Thomas Quertermous, Nilesh J Samani, Heribert Schunkert, Themistocles L Assimes, Ruth McPherson

PMID: 25977570 PMCID: PMC4841833 DOI: 10.1161/ATVBAHA.115.305513

Abstract

OBJECTIVE: Genome-wide association studies have identified multiple genetic variants affecting the risk of coronary artery disease (CAD). However, individually these explain only a small fraction of the heritability of CAD and for most, the causal biological mechanisms remain unclear. We sought to obtain further insights into potential causal processes of CAD by integrating large-scale GWA data with expertly curated databases of core human pathways and functional networks.

APPROACHES AND RESULTS: Using pathways (gene sets) from Reactome, we carried out a 2-stage gene set enrichment analysis strategy. From a meta-analyzed discovery cohort of 7 CAD genome-wide association study data sets (9889 cases/11 089 controls), nominally significant gene sets were tested for replication in a meta-analysis of 9 additional studies (15 502 cases/55 730 controls) from the Coronary ARtery DIsease Genome wide Replication and Meta-analysis (CARDIoGRAM) Consortium. A total of 32 of 639 Reactome pathways tested showed convincing association with CAD (replication P<0.05). These pathways resided in 9 of 21 core biological processes represented in Reactome, and included pathways relevant to extracellular matrix (ECM) integrity, innate immunity, axon guidance, and signaling by PDRF (platelet-derived growth factor), NOTCH, and the transforming growth factor-β/SMAD receptor complex. Many of these pathways had strengths of association comparable to those observed in lipid transport pathways. Network analysis of unique genes within the replicated pathways further revealed several interconnected functional and topologically interacting modules representing novel associations (eg, semaphoring-regulated axonal guidance pathway) besides confirming known processes (lipid metabolism). The connectivity in the observed networks was statistically significant compared with random networks (P<0.001). Network centrality analysis (degree and betweenness) further identified genes (eg, NCAM1, FYN, FURIN, etc) likely to play critical roles in the maintenance and functioning of several of the replicated pathways.

CONCLUSIONS: These findings provide novel insights into how genetic variation, interpreted in the context of biological processes and functional interactions among genes, may help define the genetic architecture of CAD.

© 2015 American Heart Association, Inc.

Keywords: coronary artery disease; pathway analysis

References

  1. Arterioscler Thromb Vasc Biol. 2013 May;33(5):886-93 - PubMed
  2. PLoS Comput Biol. 2012;8(2):e1002375 - PubMed
  3. Bioinformatics. 2013 May 15;29(10):1241-9 - PubMed
  4. Nature. 2003 Jul 24;424(6947):391-7 - PubMed
  5. J Atheroscler Thromb. 2003;10(5):267-74 - PubMed
  6. Cytokine Growth Factor Rev. 2004 Aug;15(4):237-54 - PubMed
  7. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 - PubMed
  8. Clin Genet. 2007 Jan;71(1):1-11 - PubMed
  9. PLoS Comput Biol. 2007 Apr 20;3(4):e59 - PubMed
  10. Adv Exp Med Biol. 2007;600:1-11 - PubMed
  11. Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4323-8 - PubMed
  12. Nucleic Acids Res. 2009 Jan;37(Database issue):D619-22 - PubMed
  13. Am J Hum Genet. 2009 Mar;84(3):399-405 - PubMed
  14. Hum Mol Genet. 2009 Jun 1;18(11):2078-90 - PubMed
  15. Hum Immunol. 2009 Apr;70(4):211-7 - PubMed
  16. PLoS Biol. 2010 Jan;8(1):e1000294 - PubMed
  17. Nat Rev Genet. 2010 Jun;11(6):415-25 - PubMed
  18. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W90-5 - PubMed
  19. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W749-54 - PubMed
  20. Nat Genet. 2010 Jul;42(7):565-9 - PubMed
  21. Nature. 2010 Aug 5;466(7307):714-9 - PubMed
  22. PLoS Genet. 2010 Aug;6(8). pii: e1001058. doi: 10.1371/journal.pgen.1001058 - PubMed
  23. Cell Metab. 2010 Sep 8;12(3):213-23 - PubMed
  24. Nat Rev Genet. 2010 Dec;11(12):843-54 - PubMed
  25. J Clin Invest. 2010 Dec;120(12):4410-4 - PubMed
  26. Nat Immunol. 2011 Mar;12(3):204-12 - PubMed
  27. J Lipid Res. 2013 Jul;54(7):1894-905 - PubMed
  28. Proc Natl Acad Sci U S A. 2013 Nov 12;110(46):E4369-74 - PubMed
  29. Nat Genet. 2012 May;44(5):483-9 - PubMed
  30. PLoS Comput Biol. 2012;8(7):e1002587 - PubMed
  31. Nature. 2012 Jul 26;487(7408):491-5 - PubMed
  32. Nat Genet. 2013 Jan;45(1):25-33 - PubMed
  33. Hum Mol Genet. 2013 Mar 1;22(5):1039-49 - PubMed
  34. Arterioscler Thromb Vasc Biol. 2013 May;33(5):911-9 - PubMed
  35. Circ Cardiovasc Genet. 2013 Dec;6(6):579-87 - PubMed
  36. Genomics. 2014 May-Jun;103(5-6):329-36 - PubMed
  37. PLoS Genet. 2014 Jul;10(7):e1004502 - PubMed
  38. Bioinformatics. 2015 Jan 15;31(2):262-4 - PubMed
  39. Nat Genet. 2011 Apr;43(4):333-8 - PubMed
  40. Curr Opin Lipidol. 2011 Apr;22(2):123-8 - PubMed
  41. Am J Hum Genet. 2012 Jan 13;90(1):7-24 - PubMed
  42. Am J Hum Genet. 2007 Dec;81(6):1278-83 - PubMed
  43. Genomics. 2011 Jul;98(1):1-8 - PubMed
  44. Cell Tissue Res. 2012 Jan;347(1):155-75 - PubMed
  45. Nat Immunol. 2012 Feb;13(2):136-43 - PubMed
  46. Dev Cell. 2013 Apr 29;25(2):156-68 - PubMed

MeSH terms

Publication Types

Grant support