Display options
Share it on

Sci Rep. 2015 Sep 29;5:14510. doi: 10.1038/srep14510.

Oxidative Etching of Hexagonal Boron Nitride Toward Nanosheets with Defined Edges and Holes.

Scientific reports

Yunlong Liao, Kaixiong Tu, Xiaogang Han, Liangbing Hu, John W Connell, Zhongfang Chen, Yi Lin

Affiliations

  1. National Institute of Aerospace, 100 Exploration Way, Hampton, VA, 23666, USA.
  2. Department of Chemistry, Institute for Functional Nanomaterials, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico, 00931, USA.
  3. Department of Materials Science and Engineering, The University of Maryland, College Park, MD, 20742, USA.
  4. Advanced Materials and Processing Branch, NASA Langley Research Center, Hampton, VA, 23681-2199, USA.
  5. Department of Applied Science, The College of William and Mary, Williamsburg, VA, 23185, USA.

PMID: 26416484 PMCID: PMC4586441 DOI: 10.1038/srep14510

Abstract

Lateral surface etching of two-dimensional (2D) nanosheets results in holey 2D nanosheets that have abundant edge atoms. Recent reports on holey graphene showed that holey 2D nanosheets can outperform their intact counterparts in many potential applications such as energy storage, catalysis, sensing, transistors, and molecular transport/separation. From both fundamental and application perspectives, it is desirable to obtain holey 2D nanosheets with defined hole morphology and hole edge structures. This remains a great challenge for graphene and is little explored for other 2D nanomaterials. Here, a facile, controllable, and scalable method is reported to carve geometrically defined pit/hole shapes and edges on hexagonal boron nitride (h-BN) basal plane surfaces via oxidative etching in air using silver nanoparticles as catalysts. The etched h-BN was further purified and exfoliated into nanosheets that inherited the hole/edge structural motifs and, under certain conditions, possess altered optical bandgap properties likely induced by the enriched zigzag edge atoms. This method opens up an exciting approach to further explore the physical and chemical properties of hole- and edge-enriched boron nitride and other 2D nanosheets, paving the way toward applications that can take advantage of their unique structures and performance characteristics.

References

  1. Nat Nanotechnol. 2013 Feb;8(2):119-24 - PubMed
  2. J Am Chem Soc. 2011 Oct 5;133(39):15264-7 - PubMed
  3. Sci Rep. 2015 May 21;5:10426 - PubMed
  4. Nanoscale. 2014 Nov 21;6(22):13301-13 - PubMed
  5. Nanoscale. 2013 Sep 7;5(17):7814-24 - PubMed
  6. Nanoscale. 2011 Jan;3(1):86-95 - PubMed
  7. Nanoscale. 2014 Feb 21;6(4):1922-45 - PubMed
  8. Nano Lett. 2013 May 8;13(5):2098-103 - PubMed
  9. Phys Rev Lett. 2008 Apr 4;100(13):136804 - PubMed
  10. ACS Nano. 2011 Nov 22;5(11):8739-49 - PubMed
  11. ACS Nano. 2011 Mar 22;5(3):2098-108 - PubMed
  12. Nano Lett. 2012 Jan 11;12(1):161-6 - PubMed
  13. Adv Mater. 2014 Feb 12;26(6):849-64 - PubMed
  14. ACS Nano. 2014 Feb 25;8(2):1457-62 - PubMed
  15. Nat Nanotechnol. 2010 Mar;5(3):190-4 - PubMed
  16. Angew Chem Int Ed Engl. 2013 Apr 8;52(15):4212-6 - PubMed
  17. Nano Lett. 2010 Jul 14;10(7):2454-60 - PubMed
  18. Anal Chem. 2012 Oct 2;84(19):8171-8 - PubMed
  19. ACS Nano. 2009 Apr 28;3(4):871-84 - PubMed
  20. ACS Nano. 2014 Oct 28;8(10):9867-73 - PubMed
  21. Nano Lett. 2013 Jul 10;13(7):3439-43 - PubMed
  22. Nat Commun. 2014 Aug 08;5:4554 - PubMed
  23. Nat Commun. 2013;4:2723 - PubMed
  24. Adv Mater. 2012 Sep 18;24(36):4924-55 - PubMed
  25. Nano Lett. 2014 Feb 12;14(2):839-46 - PubMed
  26. Nano Lett. 2009 Jul;9(7):2683-9 - PubMed
  27. Nanoscale. 2012 Nov 21;4(22):6908-39 - PubMed
  28. Phys Rev Lett. 2009 May 15;102(19):195505 - PubMed
  29. Phys Chem Chem Phys. 2010 Dec 21;12(47):15349-53 - PubMed
  30. Nano Lett. 2011 Aug 10;11(8):3113-6 - PubMed
  31. ACS Nano. 2014 Aug 26;8(8):8255-65 - PubMed
  32. Science. 2014 Jan 10;343(6167):163-7 - PubMed

Publication Types