Display options
Share it on

Sci Rep. 2015 Oct 07;5:14801. doi: 10.1038/srep14801.

Simulating photoacoustic waves produced by individual biological particles with spheroidal wave functions.

Scientific reports

Yong Li, Hui Fang, Changjun Min, Xiaocong Yuan

Affiliations

  1. Institute of Modern Optics, Key Laboratory of Optical Information Science and Technology, Ministry of Education of China, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China.
  2. School of Mechanical Engineering, Jinzhong University, Jinzhong 030619, China.
  3. Institute of Micro and Nano Optics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.

PMID: 26442830 PMCID: PMC4595827 DOI: 10.1038/srep14801

Abstract

Under the usual approximation of treating a biological particle as a spheroidal droplet, we consider the analysis of its size and shape with the high frequency photoacoustics and develop a numerical method which can simulate its characteristic photoacoustic waves. This numerical method is based on the calculation of spheroidal wave functions, and when comparing to the finite element model (FEM) calculation, can reveal more physical information and can provide results independently at each spatial points. As the demonstration, red blood cells (RBCs) and MCF7 cell nuclei are studied, and their photoacoustic responses including field distribution, spectral amplitude, and pulse forming are calculated. We expect that integrating this numerical method with the high frequency photoacoustic measurement will form a new modality being extra to the light scattering method, for fast assessing the morphology of a biological particle.

References

  1. IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Oct;57(10):2293-304 - PubMed
  2. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 May;59(5 Pt B):5772-89 - PubMed
  3. Phys Med Biol. 2014 Oct 7;59(19):5795-810 - PubMed
  4. Biophys J. 2013 Jul 2;105(1):59-67 - PubMed
  5. Opt Lett. 2010 Oct 1;35(19):3195-7 - PubMed
  6. Photoacoustics. 2013 Sep 24;1(3-4):49-53 - PubMed
  7. Lancet. 2008 Oct 18;372(9647):1411-26 - PubMed
  8. Opt Express. 2014 Aug 25;22(17):19953-69 - PubMed
  9. Cancers (Basel). 2013 Dec 10;5(4):1691-738 - PubMed
  10. Science. 2012 Mar 23;335(6075):1458-62 - PubMed
  11. J Biomed Opt. 2012 May;17(5):056004 - PubMed
  12. Biophys J. 2013 Aug 20;105(4):841-7 - PubMed
  13. Science. 1990 Oct 5;250(4977):101-4 - PubMed
  14. Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):5759-64 - PubMed
  15. Phys Rev Lett. 2014 Jan 10;112(1):014302 - PubMed
  16. Appl Opt. 2013 Dec 1;52(34):8258-69 - PubMed
  17. Appl Opt. 1998 May 1;37(13):2735-48 - PubMed
  18. J Biomed Opt. 2010 Mar-Apr;15(2):021314 - PubMed
  19. Appl Opt. 1975 Jan 1;14(1):29-49 - PubMed
  20. J Biomed Opt. 2012 Sep;17(9):96016-1 - PubMed
  21. Nat Photonics. 2009 Aug 29;3(9):503-509 - PubMed
  22. J Acoust Soc Am. 2005 Feb;117(2):934-43 - PubMed
  23. Opt Lett. 2006 Dec 15;31(24):3623-5 - PubMed
  24. Trends Cell Biol. 2013 Apr;23(4):151-9 - PubMed

MeSH terms

Publication Types