Display options
Share it on

Front Microbiol. 2015 Nov 10;6:1248. doi: 10.3389/fmicb.2015.01248. eCollection 2015.

Fusarium Oxysporum Volatiles Enhance Plant Growth Via Affecting Auxin Transport and Signaling.

Frontiers in microbiology

Vasileios Bitas, Nathaniel McCartney, Ningxiao Li, Jill Demers, Jung-Eun Kim, Hye-Seon Kim, Kathleen M Brown, Seogchan Kang

Affiliations

  1. Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park PA, USA.
  2. Department of Entomology, The Pennsylvania State University, University Park PA, USA ; Center for Chemical Ecology, The Pennsylvania State University University Park, PA, USA.
  3. Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University University Park, PA, USA.
  4. Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University University Park, PA, USA ; Department of Plant Science, The Pennsylvania State University University Park, PA, USA.
  5. Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park PA, USA ; Center for Chemical Ecology, The Pennsylvania State University University Park, PA, USA ; Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University University Park, PA, USA.

PMID: 26617587 PMCID: PMC4639627 DOI: 10.3389/fmicb.2015.01248

Abstract

Volatile organic compounds (VOCs) have well-documented roles in plant-plant communication and directing animal behavior. In this study, we examine the less understood roles of VOCs in plant-fungal relationships. Phylogenetically and ecologically diverse strains of Fusarium oxysporum, a fungal species complex that often resides in the rhizosphere of assorted plants, produce volatile compounds that augment shoot and root growth of Arabidopsis thaliana and tobacco. Growth responses of A. thaliana hormone signaling mutants and expression patterns of a GUS reporter gene under the auxin-responsive DR5 promoter supported the involvement of auxin signaling in F. oxysporum volatile-mediated growth enhancement. In addition, 1-naphthylthalamic acid, an inhibitor of auxin efflux, negated F. oxysporum volatile-mediated growth enhancement in both plants. Comparison of the profiles of volatile compounds produced by F. oxysporum strains that differentially affected plant growth suggests that the relative compositions of both growth inhibitory and stimulatory compounds may determine the degree of plant growth enhancement. Volatile-mediated signaling between fungi and plants may represent a potentially conserved, yet mostly overlooked, mechanism underpinning plant-fungus interactions and fungal niche adaption.

Keywords: auxin signaling; chemical effector; fungal ecology; plant growth and development; volatile organic compounds

References

  1. Curr Opin Plant Biol. 2002 Aug;5(4):351-4 - PubMed
  2. New Phytol. 2007;175(3):417-24 - PubMed
  3. Fungal Genet Biol. 2007 Oct;44(10):1011-23 - PubMed
  4. Mol Plant Microbe Interact. 2009 Jul;22(7):830-9 - PubMed
  5. EMBO J. 1999 Apr 15;18(8):2066-73 - PubMed
  6. FEMS Microbiol Ecol. 2011 May;76(2):342-51 - PubMed
  7. Plant Physiol. 2004 Mar;134(3):1217-26 - PubMed
  8. Curr Genet. 2003 Oct;44(1):49-57 - PubMed
  9. Mol Plant Pathol. 2009 May;10(3):311-24 - PubMed
  10. Nature. 2005 May 26;435(7041):446-51 - PubMed
  11. Nature. 2005 May 26;435(7041):441-5 - PubMed
  12. Plant Physiol. 2004 Mar;134(3):1017-26 - PubMed
  13. Science. 1993 Oct 22;262(5133):539-44 - PubMed
  14. J Biol Chem. 2002 May 31;277(22):19861-6 - PubMed
  15. Curr Opin Plant Biol. 2014 Aug;20:19-25 - PubMed
  16. Appl Environ Microbiol. 2007 Sep;73(17):5639-41 - PubMed
  17. Annu Rev Microbiol. 2009;63:363-83 - PubMed
  18. Trends Plant Sci. 2009 Jul;14(7):399-408 - PubMed
  19. Curr Opin Plant Biol. 2014 Aug;20:96-103 - PubMed
  20. Annu Rev Phytopathol. 2014;52:495-516 - PubMed
  21. Plant J. 2006 Mar;45(5):804-18 - PubMed
  22. EMBO J. 1987 Dec 20;6(13):3901-7 - PubMed
  23. Curr Biol. 2010 May 11;20(9):R392-7 - PubMed
  24. Phytopathology. 2013 Jun;103(6):538-44 - PubMed
  25. Nat Prod Rep. 2007 Aug;24(4):674-86 - PubMed
  26. Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4927-32 - PubMed
  27. Plant Physiol. 1974 Feb;53(2):258-60 - PubMed
  28. FEBS Lett. 2009 Nov 3;583(21):3473-7 - PubMed
  29. Mol Plant Microbe Interact. 2013 Aug;26(8):835-43 - PubMed
  30. Prikl Biokhim Mikrobiol. 2006 Mar-Apr;42(2):133-43 - PubMed
  31. Microbes Environ. 2013;28(1):42-9 - PubMed
  32. Mol Plant Microbe Interact. 2011 Jun;24(6):733-48 - PubMed
  33. Planta. 2007 Sep;226(4):839-51 - PubMed
  34. Mol Plant Microbe Interact. 2006 Aug;19(8):924-30 - PubMed
  35. PLoS One. 2008;3(11):e3673 - PubMed
  36. J Biol Chem. 1995 May 26;270(21):12526-30 - PubMed
  37. Plant J. 2004 Dec;40(5):772-82 - PubMed
  38. Fungal Genet Biol. 2009 Dec;46(12):936-48 - PubMed
  39. Curr Biol. 2006 Jun 6;16(11):1123-7 - PubMed
  40. Curr Opin Plant Biol. 2010 Aug;13(4):378-87 - PubMed
  41. Proc Natl Acad Sci U S A. 2008 Jun 24;105(25):8790-4 - PubMed
  42. Trends Plant Sci. 2012 Nov;17(11):644-55 - PubMed
  43. Genes Dev. 1998 Jul 15;12(14):2175-87 - PubMed
  44. Science. 1988 Aug 26;241(4869):1086-9 - PubMed
  45. Curr Opin Plant Biol. 2014 Aug;20:118-26 - PubMed
  46. Planta. 2010 Nov;232(6):1355-70 - PubMed

Publication Types