Display options
Share it on

J Cancer Sci Ther. 2015;7(2):34-43. doi: 10.4172/1948-5956.1000322.

miR-203 Functions as a Tumor Suppressor by Inhibiting Epithelial to Mesenchymal Transition in Ovarian Cancer.

Journal of cancer science & therapy

Guannan Zhao, Yuqi Guo, Zixuan Chen, Yinan Wang, Chuanhe Yang, Andrew Dudas, Ziyun Du, Wen Liu, Yanan Zou, Erzsebet Szabo, Sue-Chin Lee, Michelle Sims, Weiwang Gu, Todd Tillmanns, Lawrence M Pfeffer, Gabor Tigyi, Junming Yue

Affiliations

  1. Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, USA; Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA; The Third Affiliated Hospital, Zhengzhou University, China.
  2. The Third Affiliated Hospital, Zhengzhou University, China.
  3. Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, USA; Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA.
  4. Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, USA; Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA; Southern Medical University, Guangzhou, China.
  5. Harbin Medical University, P. R. China.
  6. Department of Physiology, University of Tennessee Health Science Center, USA.
  7. Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, USA.
  8. Southern Medical University, Guangzhou, China.
  9. West Cancer Center, Memphis, TN, USA.

PMID: 26819680 PMCID: PMC4725318 DOI: 10.4172/1948-5956.1000322

Abstract

OBJECTIVE: Ovarian cancer is a gynecological malignancy that has a high mortality rate in women due to metastatic progression and recurrence. miRNAs are small, endogenous, noncoding RNAs that function as tumor suppressors or oncogenes in various human cancers by selectively suppressing the expression of target genes. The objective of this study is to investigate the role of miR-203 in ovarian cancer.

METHODS: miR-203 was expressed in ovarian cancer SKOV3 and OVCAR3 cells using lentiviral vector and cell proliferation, migration, invasion were examined using MTT, transwell and Matrigel assays, respectively. Tumor growth was examined using Xenograft mouse model.

RESULTS: miR-203 expression was downregulated, whereas expression of its target gene Snai2 was upregulated in human ovarian serous carcinoma tissue as compared to normal ovaries. In addition, high miR-203 expression was associated with long-term survival rate of ovarian cancer patients. miR-203 overexpression inhibited cell proliferation, migration, and invasion of SKOV3 and OVCAR3 ovarian cancer cells. Furthermore, miR-203 overexpression inhibited the epithelial to mesenchymal transition (EMT) in ovarian cancer cells. Silencing Snai2 with lentiviral short hairpin (sh) RNA mimics miR-203-mediated inhibition of EMT and tumor cell invasion. Xenografts of miR-203-overexpressing ovarian cancer cells in immunodeficient mice exhibited a significantly reduced tumor growth.

CONCLUSION: miR-203 functions as a tumor suppressor by down regulating Snai2 in ovarian cancer.

Keywords: Epithelial to mesenchymal transition; Ovarian cancer; miR-203

References

  1. J Cell Biochem. 2009 Oct 15;108(3):726-36 - PubMed
  2. PLoS One. 2013;8(2):e57329 - PubMed
  3. Int J Gynaecol Obstet. 2014 Jan;124(1):1-5 - PubMed
  4. Biochem Biophys Res Commun. 2010 Apr 9;394(3):667-72 - PubMed
  5. Cell Cycle. 2011 Apr 15;10 (8):1312-21 - PubMed
  6. Oncol Rep. 2014 May;31(5):2021-8 - PubMed
  7. Med Oncol. 2013;30(3):681 - PubMed
  8. Oncol Lett. 2014 Mar;7(3):658-662 - PubMed
  9. Int J Gynecol Cancer. 2009 Aug;19(6):992-7 - PubMed
  10. J Exp Clin Cancer Res. 2012 Jun 19;31:58 - PubMed
  11. Cancer Res. 2011 Jul 15;71(14):5009-19 - PubMed
  12. Tumour Biol. 2014 Jun;35(6):5953-63 - PubMed
  13. J Pathol. 2005 Aug;206(4):451-7 - PubMed
  14. Int J Oncol. 2007 Aug;31(2):277-83 - PubMed
  15. Nat Commun. 2014;5:2977 - PubMed
  16. Pharm Res. 2015 Mar;32(3):769-78 - PubMed
  17. J Cell Physiol. 2007 Dec;213(3):581-8 - PubMed
  18. Cancer Cell. 2014 Sep 8;26(3):344-57 - PubMed
  19. BMC Med Imaging. 2008 Oct 16;8:16 - PubMed
  20. PLoS One. 2014 Aug 19;9(8):e105331 - PubMed
  21. Carcinogenesis. 2013 Oct;34(10):2415-23 - PubMed
  22. Nat Cell Biol. 2009 Dec;11(12 ):1487-95 - PubMed
  23. Int J Cancer. 2013 Aug 1;133(3):544-55 - PubMed
  24. Maturitas. 2014 Sep;79(1):48-51 - PubMed
  25. Clin Cancer Res. 2014 Feb 15;20(4):938-50 - PubMed
  26. PLoS One. 2014 Aug 20;9(8):e105570 - PubMed
  27. Oncogenesis. 2012 Mar 12;1:e3 - PubMed
  28. Genes Cancer. 2011 Aug;2(8):782-91 - PubMed
  29. Oncogene. 2012 May 3;31(18):2309-22 - PubMed
  30. Int J Clin Exp Pathol. 2013 Dec 15;7(1):322-30 - PubMed
  31. Mol Cell Biol. 2012 Mar;32(5):941-53 - PubMed
  32. J Pathol. 2015 Jan;235(1):25-36 - PubMed
  33. Int J Oncol. 2014 Jun;44(6):1923-32 - PubMed
  34. CA Cancer J Clin. 2012 Jan-Feb;62(1):10-29 - PubMed
  35. PLoS One. 2011;6(10 ):e26514 - PubMed
  36. Br J Cancer. 2009 Jan 13;100(1):134-44 - PubMed
  37. Cancer Res. 2008 Aug 15;68(16):6524-32 - PubMed
  38. Curr Cancer Drug Targets. 2010 May;10(3):268-78 - PubMed
  39. Lab Invest. 2010 Mar;90(3):414-25 - PubMed
  40. Cell Cycle. 2011 Apr 1;10(7):1121-31 - PubMed
  41. Cell Prolif. 2013 Aug;46(4):436-46 - PubMed
  42. Science. 2012 Jun 22;336(6088):1549-54 - PubMed
  43. J Ovarian Res. 2013 Jul 10;6(1):49 - PubMed
  44. Gynecol Oncol. 2010 May;117(2):170-6 - PubMed
  45. J Ovarian Res. 2013 Jul 10;6(1):50 - PubMed
  46. PLoS One. 2012;7(7):e40378 - PubMed
  47. Mol Cancer. 2011 Aug 18;10 :99 - PubMed
  48. J Biol Chem. 2013 Apr 12;288(15):10241-53 - PubMed
  49. Pancreas. 2009 Jan;38(1):e1-6 - PubMed

Publication Types

Grant support