Display options
Share it on

Mol Ther Methods Clin Dev. 2016 May 11;3:16035. doi: 10.1038/mtm.2016.35. eCollection 2016.

Rapid, scalable, and low-cost purification of recombinant adeno-associated virus produced by baculovirus expression vector system.

Molecular therapy. Methods & clinical development

Pierre-Olivier Buclez, Gabriella Dias Florencio, Karima Relizani, Cyriaque Beley, Luis Garcia, Rachid Benchaouir

Affiliations

  1. SQY Therapeutics, UFR des Sciences de la Santé , Montigny-le-Bretonneux, France.
  2. Université de Versailles Saint-Quentin en Yvelines, U1179 INSERM/UVSQ, UFR des Sciences de la Santé , Montigny-le-Bretonneux, France.

PMID: 27226971 PMCID: PMC4867670 DOI: 10.1038/mtm.2016.35

Abstract

Recombinant adeno-associated viruses (rAAV) are largely used for gene transfer in research, preclinical developments, and clinical trials. Their broad in vivo biodistribution and long-term efficacy in postmitotic tissues make them good candidates for numerous gene transfer applications. Upstream processes able to produce large amounts of rAAV were developed, particularly those using baculovirus expression vector system. In parallel, downstream processes present a large panel of purification methods, often including multiple and time consuming steps. Here, we show that simple tangential flow filtration, coupled with an optimized iodixanol-based isopycnic density gradient, is sufficient to purify several liters of crude lysate produced by baculovirus expression vector system in only one working day, leading to high titers and good purity of rAAV products. Moreover, we show that the viral vectors retain their in vitro and in vivo functionalities. Our results demonstrate that simple, rapid, and relatively low-cost methods can easily be implemented for obtaining a high-quality grade of gene therapy products based on rAAV technology.

References

  1. Hum Gene Ther. 2001 Jan 1;12(1):71-6 - PubMed
  2. Cell Biol Toxicol. 2010 Feb;26(1):57-68 - PubMed
  3. Gene Ther. 2013 Sep;20(9):930-8 - PubMed
  4. Hum Gene Ther Methods. 2013 Aug;24(4):253-69 - PubMed
  5. Mol Ther. 2012 Nov;20(11):2120-33 - PubMed
  6. Hum Gene Ther. 1998 Mar 20;9(5):695-706 - PubMed
  7. Gene Ther. 2013 Apr;20(4):361-9 - PubMed
  8. J Virol Methods. 2000 Mar;85(1-2):23-34 - PubMed
  9. Hum Gene Ther. 2009 Sep;20(9):1013-21 - PubMed
  10. Curr Gene Ther. 2014;14(2):86-100 - PubMed
  11. J Virol Methods. 2014 Feb;196:163-73 - PubMed
  12. Protein Expr Purif. 2009 Jun;65(2):122-32 - PubMed
  13. Mol Ther. 2009 Nov;17(11):1888-96 - PubMed
  14. Hum Gene Ther Methods. 2012 Feb;23(1):56-64 - PubMed
  15. Hum Gene Ther. 2007 Apr;18(4):367-78 - PubMed
  16. Hum Gene Ther. 2012 Jun;23(6):566-75 - PubMed
  17. J Virol. 1998 Mar;72(3):2224-32 - PubMed
  18. Hum Gene Ther. 2014 Mar;25(3):212-22 - PubMed
  19. Hum Gene Ther Clin Dev. 2014 Dec;25(4):212-7 - PubMed
  20. Expert Rev Clin Pharmacol. 2014 Jan;7(1):53-65 - PubMed
  21. N Engl J Med. 2008 May 22;358(21):2231-9 - PubMed
  22. Mol Ther. 2006 Apr;13(4):823-8 - PubMed
  23. Hum Gene Ther. 2008 Oct;19(10):979-90 - PubMed
  24. J Virol Methods. 2007 Mar;140(1-2):183-92 - PubMed
  25. Nat Rev Genet. 2014 Jul;15(7):445-51 - PubMed
  26. Hum Gene Ther. 1998 Dec 10;9(18):2745-60 - PubMed
  27. Mol Ther Methods Clin Dev. 2015 Jul 15;2:15024 - PubMed
  28. Hum Gene Ther. 2010 Oct;21(10 ):1259-71 - PubMed
  29. Hum Gene Ther. 1999 Jul 20;10 (11):1885-91 - PubMed
  30. Gene Ther. 2006 Jan;13(1):20-8 - PubMed
  31. Hum Gene Ther Methods. 2012 Aug;23(4):234-41 - PubMed
  32. Mol Ther. 2008 Dec;16(12):1944-52 - PubMed
  33. Hum Gene Ther. 2011 Aug;22(8):1021-30 - PubMed
  34. Mol Ther. 2010 Aug;18(8):1501-8 - PubMed
  35. Gene Ther. 1999 Jun;6(6):973-85 - PubMed
  36. N Engl J Med. 2008 May 22;358(21):2240-8 - PubMed
  37. J Virol Methods. 2004 Dec 1;122(1):113-8 - PubMed
  38. Hum Gene Ther. 2002 Nov 1;13(16):1935-43 - PubMed

Publication Types