Display options
Share it on

Front Immunol. 2016 Dec 26;7:649. doi: 10.3389/fimmu.2016.00649. eCollection 2016.

The Fab Fragment of a Human Anti-Siglec-9 Monoclonal Antibody Suppresses LPS-Induced Inflammatory Responses in Human Macrophages.

Frontiers in immunology

Sasa Chu, Xuhui Zhu, Na You, Wei Zhang, Feng Zheng, Binggang Cai, Tingting Zhou, Yiwen Wang, Qiannan Sun, Zhiguo Yang, Xin Zhang, Changjun Wang, Shinan Nie, Jin Zhu, Maorong Wang

Affiliations

  1. Department of Infectious Disease, Anhui Medical University Affiliated with Bayi Clinical College, Hefei, China; Institute of Liver Disease, Nanjing Jingdu Hospital, Nanjing, China.
  2. Huadong Medical Institute of Biotechniques, Nanjing, China; Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
  3. Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University , Nanjing , China.
  4. Huadong Medical Institute of Biotechniques , Nanjing , China.
  5. Institute of Liver Disease, Nanjing Jingdu Hospital , Nanjing , China.
  6. Department of Traditional Chinese Pharmacology, Chinese Pharmaceutical University , Nanjing , China.
  7. Huadong Medical Institute of Biotechniques, Nanjing, China; Department of Pathology, Key Laboratory of Antibody Technique of the Ministry of Health, NJMU, Nanjing, China.

PMID: 28082984 PMCID: PMC5183739 DOI: 10.3389/fimmu.2016.00649

Abstract

Sepsis is a major cause of death for hospitalized patients and is characterized by massive overreaction of immune responses to invading pathogens which is mediated by cytokines. For decades, there has been no effective treatment for sepsis. Sialic acid-binding, Ig-like lectin-9 (Siglec-9), is an immunomodulatory receptor expressed primarily on hematopoietic cells which is involved in various aspects of inflammatory responses and is a potential target for treatment of sepsis. The aim of the present study was to develop a human anti-Siglec-9 Fab fragment, which was named hS9-Fab03 and investigate its immune activity in human macrophages. We began by constructing the hS9-Fab03 prokaryotic expression vector from human antibody library and phage display. Then, we utilized a multitude of assays, including SDS-PAGE, Western blotting, ELISA, affinity, and kinetics assay to evaluate the binding affinity and specificity of hS9-Fab03. Results demonstrated that hS9-Fab03 specifically bind to Siglec-9 antigen with high affinity, and pretreatment with hS9-Fab03 could attenuate lipopolysaccharide (LPS)-induced TNF-α, IL-6, IL-1β, IL-8, and IFN-β production in human PBMC-derived macrophages, but slightly increased IL-10 production in an early time point. We also observed similar results in human THP-1-differentiated macrophages. Collectively, we prepared the hS9-Fab03 with efficient activity for blocking LPS-induced pro-inflammatory cytokines production in human macrophages. These results indicated that ligation of Siglec-9 with hS9-Fab03 might be a novel anti-inflammatory therapeutic strategy for sepsis.

Keywords: Fab fragment; LPS; Siglec-9; TLR4; human anti-Siglec-9 antibody; human macrophages; sepsis

References

  1. J Immunol Methods. 2007 Jan 10;318(1-2):113-24 - PubMed
  2. Trends Biochem Sci. 2016 Jun;41(6):519-31 - PubMed
  3. Nat Med. 2007 Nov;13(11):1324-32 - PubMed
  4. Blood. 2014 May 29;123(22):3512-23 - PubMed
  5. Mol Biotechnol. 2005 Sep;31(1):41-54 - PubMed
  6. Nat Immunol. 2010 May;11(5):373-84 - PubMed
  7. Semin Immunol. 2007 Feb;19(1):24-32 - PubMed
  8. PLoS One. 2016 Jan 19;11(1):e0146856 - PubMed
  9. Nat Rev Immunol. 2010 Mar;10(3):170-81 - PubMed
  10. Immunity. 2011 May 27;34(5):637-50 - PubMed
  11. Glycobiology. 2014 Sep;24(9):800-6 - PubMed
  12. JAMA. 2010 Oct 27;304(16):1787-94 - PubMed
  13. Immunol Rev. 2016 Jan;269(1):145-61 - PubMed
  14. Crit Care Med. 2010 Aug;38(8):1685-94 - PubMed
  15. J Leukoc Biol. 2016 Jun;99(6):825-38 - PubMed
  16. Proc Natl Acad Sci U S A. 2014 Sep 30;111(39):14211-6 - PubMed
  17. J Neurosci. 2015 Feb 11;35(6):2452-64 - PubMed
  18. Nature. 2002 Dec 19-26;420(6917):885-91 - PubMed
  19. J Med Case Rep. 2016 Jul 25;10 :202 - PubMed
  20. Int J Biol Macromol. 2014 Jul;68:173-7 - PubMed
  21. Inflamm Res. 2016 Feb;65(2):133-42 - PubMed
  22. Chest. 2014 Jun;145(6):1407-18 - PubMed
  23. Ann N Y Acad Sci. 2012 Apr;1253:102-11 - PubMed
  24. Cell Biochem Biophys. 2015 Mar;71(2):765-76 - PubMed
  25. Int J Cancer. 2014 Mar 1;134(5):1239-49 - PubMed
  26. Curr Opin Pulm Med. 2013 May;19(3):305-9 - PubMed
  27. Pediatr Res. 2009 Sep;66(3):266-71 - PubMed
  28. Nat Rev Immunol. 2007 Apr;7(4):255-66 - PubMed
  29. J Immunol. 2009 Dec 15;183(12):7703-9 - PubMed
  30. Int J Mol Sci. 2015 Oct 23;16(10):25502-15 - PubMed
  31. Nat Rev Immunol. 2008 Oct;8(10):776-87 - PubMed
  32. Hum Vaccin Immunother. 2015 ;11(2):458-67 - PubMed
  33. J Proteome Res. 2017 Jan 6;16(1):156-169 - PubMed
  34. Nature. 2005 Oct 13;437(7061):1032-7 - PubMed
  35. J Immunol. 2011 Nov 1;187(9):4881-9 - PubMed
  36. Annu Rev Immunol. 2012;30:357-92 - PubMed
  37. Immunology. 2011 Jan;132(1):18-26 - PubMed
  38. Biochem Biophys Res Commun. 2008 May 9;369(3):878-83 - PubMed
  39. Blood. 2005 Aug 15;106(4):1423-31 - PubMed
  40. Prog Biophys Mol Biol. 2015 Oct;119(1):72-83 - PubMed
  41. Cancer Prev Res (Phila). 2012 Sep;5(9):1090-102 - PubMed
  42. Sci Rep. 2016 Mar 24;6:23613 - PubMed

Publication Types