Display options
Share it on

BMC Bioinformatics. 2017 Jan 14;18(1):33. doi: 10.1186/s12859-016-1440-8.

TTCA: an R package for the identification of differentially expressed genes in time course microarray data.

BMC bioinformatics

Marco Albrecht, Damian Stichel, Benedikt Müller, Ruth Merkle, Carsten Sticht, Norbert Gretz, Ursula Klingmüller, Kai Breuhahn, Franziska Matthäus

Affiliations

  1. Complex Biological Systems Group (BIOMS/IWR), Heidelberg, Im Neuenheimer Feld 294, Heidelberg, 69120, Germany. [email protected].
  2. Systems Biology Group, Université du Luxembourg, 7, avenue du Swing, Belvaux, L-4367, Luxembourg. [email protected].
  3. Complex Biological Systems Group (BIOMS/IWR), Heidelberg, Im Neuenheimer Feld 294, Heidelberg, 69120, Germany.
  4. CCU Neuropathology Group, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 221, Heidelberg, 69120, Germany.
  5. Institute of Pathology, Heidelberg University Hospital, Im Neuenheimer Feld 672, Heidelberg, 69120, Germany.
  6. German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.
  7. Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Im Neuenheimer Feld 430, Heidelberg, 69120, Germany.
  8. Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, Mannheim, 68167, Germany.
  9. Frankfurt Institute for Advanced Studies (FIAS), Goethe University Frankfurt, Ruth-Moufang-Straße 1, Frankfurt am Main, 60438, Germany.

PMID: 28088176 PMCID: PMC5237546 DOI: 10.1186/s12859-016-1440-8

Abstract

BACKGROUND: The analysis of microarray time series promises a deeper insight into the dynamics of the cellular response following stimulation. A common observation in this type of data is that some genes respond with quick, transient dynamics, while other genes change their expression slowly over time. The existing methods for detecting significant expression dynamics often fail when the expression dynamics show a large heterogeneity. Moreover, these methods often cannot cope with irregular and sparse measurements.

RESULTS: The method proposed here is specifically designed for the analysis of perturbation responses. It combines different scores to capture fast and transient dynamics as well as slow expression changes, and performs well in the presence of low replicate numbers and irregular sampling times. The results are given in the form of tables including links to figures showing the expression dynamics of the respective transcript. These allow to quickly recognise the relevance of detection, to identify possible false positives and to discriminate early and late changes in gene expression. An extension of the method allows the analysis of the expression dynamics of functional groups of genes, providing a quick overview of the cellular response. The performance of this package was tested on microarray data derived from lung cancer cells stimulated with epidermal growth factor (EGF).

CONCLUSION: Here we describe a new, efficient method for the analysis of sparse and heterogeneous time course data with high detection sensitivity and transparency. It is implemented as R package TTCA (transcript time course analysis) and can be installed from the Comprehensive R Archive Network, CRAN. The source code is provided with the Additional file 1.

Keywords: Differential expression; EGF; Gene ontology; Gene set analysis; Stimulation experiments; Time series

References

  1. BMC Bioinformatics. 2008 Jun 06;9:267 - PubMed
  2. BMC Bioinformatics. 2009 Oct 15;10:336 - PubMed
  3. J Biol Rhythms. 2010 Oct;25(5):372-80 - PubMed
  4. Nat Biotechnol. 2011 Jul 11;29(7):572-3 - PubMed
  5. PLoS One. 2015 Mar 16;10(3):e0122439 - PubMed
  6. BMC Bioinformatics. 2007 Jul 02;8:233 - PubMed
  7. J Comput Biol. 2000;7(6):819-37 - PubMed
  8. BMC Bioinformatics. 2010 May 26;11:279 - PubMed
  9. Cancer Metastasis Rev. 2013 Dec;32(3-4):391-402 - PubMed
  10. BMC Genomics. 2009 Jan 14;10:22 - PubMed
  11. Bioinformatics. 2005 Aug 15;21(16):3439-40 - PubMed
  12. Bioinformatics. 2006 Feb 1;22(3):310-6 - PubMed
  13. BMC Bioinformatics. 2009 Dec 10;10:409 - PubMed
  14. Sci Rep. 2013;3:2327 - PubMed
  15. BMC Bioinformatics. 2013 Jan 16;14:6 - PubMed
  16. Bioinformatics. 2011 Nov 15;27(22):3135-41 - PubMed
  17. BMC Bioinformatics. 2008 Oct 06;9:415 - PubMed
  18. Nucleic Acids Res. 2013 Apr;41(8):4378-91 - PubMed
  19. Stat Appl Genet Mol Biol. 2007;6:Article24 - PubMed
  20. Bioinformatics. 2006 May 1;22(9):1096-102 - PubMed
  21. Stat Appl Genet Mol Biol. 2004;3:Article3 - PubMed
  22. Bioinformatics. 2007 May 1;23(9):1164-7 - PubMed
  23. J Cell Physiol. 2012 Jan;227(1):35-43 - PubMed
  24. Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12837-42 - PubMed
  25. Bioinformatics. 2009 Feb 1;25(3):415-6 - PubMed
  26. Nat Protoc. 2009;4(8):1184-91 - PubMed
  27. Nat Rev Genet. 2010 Oct;11(10 ):733-9 - PubMed
  28. Biostatistics. 2009 Oct;10(4):667-79 - PubMed
  29. Bioinformatics. 2006 Feb 15;22(4):507-8 - PubMed
  30. Nucleic Acids Res. 2012 Aug;40(14):6391-400 - PubMed
  31. Genomics. 2012 Dec;100(6):337-44 - PubMed
  32. BMC Bioinformatics. 2011 May 20;12:180 - PubMed
  33. Bioinformatics. 2010 Dec 1;26(23):2944-51 - PubMed
  34. Mol Cancer. 2016 Mar 18;15:25 - PubMed
  35. BMC Bioinformatics. 2008 Mar 26;9 Suppl 2:S12 - PubMed
  36. Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21 - PubMed
  37. BMC Bioinformatics. 2011 Jan 26;12:35 - PubMed
  38. Nucleic Acids Res. 2005 Nov 10;33(20):e175 - PubMed
  39. J Comput Biol. 2010 Mar;17(3):355-67 - PubMed
  40. Curr Mol Med. 2016 Apr 29;:null - PubMed
  41. Bioinformatics. 2006 Nov 1;22(21):2650-7 - PubMed
  42. BMC Bioinformatics. 2007 Mar 08;8 Suppl 1:S10 - PubMed
  43. Biostatistics. 2003 Apr;4(2):249-64 - PubMed

MeSH terms

Publication Types