Display options
Share it on

Biophys Rev. 2012 Sep;4(3):231-243. doi: 10.1007/s12551-012-0082-y. Epub 2012 Sep 01.

Contractility assessment in enzymatically isolated cardiomyocytes.

Biophysical reviews

Carlos Bazan, David Torres Barba, Trevor Hawkins, Hung Nguyen, Samantha Anderson, Esteban Vazquez-Hidalgo, Rosa Lemus, J'Terrell Moore, Jeremy Mitchell, Johanna Martinez, Delnita Moore, Jessica Larsen, Paul Paolini

Affiliations

  1. Computational Science Research Center Rees-Stealy Research Foundation Laboratory, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1245, USA. [email protected].
  2. Computational Science Research Center Rees-Stealy Research Foundation Laboratory, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1245, USA.

PMID: 28510074 PMCID: PMC5425706 DOI: 10.1007/s12551-012-0082-y

Abstract

The use of enzymatically isolated cardiac myocytes is ubiquitous in modern cardiovascular research. Parallels established between cardiomyocyte shortening responses and those of intact tissue make the cardiomyocyte an invaluable experimental model of cardiac function. Much of our understanding regarding the fundamental processes underlying heart function is owed to our increasing capabilities in single-cell stimulation and direct or indirect observation, as well as quantitative analysis of such cells. Of the many important mechanisms and functions that can be readily assessed in cardiomyocytes at all stages of development, contractility is the most representative and one of the most revealing. The purpose of this review is to provide a survey of various methodological approaches in the literature used to assess adult and neonatal cardiomyocyte contractility. The various methods employed to evaluate the contractile behavior of enzymatically isolated mammalian cardiac myocytes can be conveniently divided into two general categories-those employing optical (image)-based systems and those that use transducer-based technologies. This survey is by no means complete, but we have made an effort to include the most popular methods in terms of reliability and accessibility. These techniques are in constant evolution and hold great promise for the next generation of breakthrough studies in cell biology for the prevention, treatment, and cure of cardiovascular diseases.

Keywords: Cardiac myocyte; Cardiomyocyte; Cardiovascular research; Contractility; Heart contraction; Sarcomere length

References

  1. Phys Rev Lett. 1986 Mar 3;56(9):930-933 - PubMed
  2. Biophys J. 1999 Apr;76(4):2307-16 - PubMed
  3. Eur Biophys J. 1999;28(3):179-86 - PubMed
  4. Biophys J. 1999 Nov;77(5):2856-63 - PubMed
  5. J Biomech. 2000 Jan;33(1):15-22 - PubMed
  6. Biophys J. 2000 May;78(5):2675-9 - PubMed
  7. Biophys J. 1976 Aug;16(8):919-30 - PubMed
  8. Biophys J. 2000 Aug;79(2):1155-67 - PubMed
  9. Nat Cell Biol. 2001 May;3(5):466-72 - PubMed
  10. J Appl Physiol (1985). 2001 Aug;91(2):986-94 - PubMed
  11. Biophys J. 2001 Sep;81(3):1759-64 - PubMed
  12. J Appl Physiol (1985). 2001 Sep;91(3):1152-9 - PubMed
  13. Am J Physiol Heart Circ Physiol. 2001 Sep;281(3):H1442-6 - PubMed
  14. IEEE Trans Biomed Eng. 2001 Sep;48(9):996-1006 - PubMed
  15. J Biomech. 2001 Dec;34(12):1545-53 - PubMed
  16. Biophys J. 2002 Jun;82(6):3314-29 - PubMed
  17. Methods Cell Biol. 2002;68:67-90 - PubMed
  18. Biophys J. 2002 Sep;83(3):1380-94 - PubMed
  19. Biophys J. 2002 Dec;83(6):3162-76 - PubMed
  20. Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1484-9 - PubMed
  21. Biol Proced Online. 2001 Dec 11;3:43-53 - PubMed
  22. Cardiovasc Res. 2003 Jun 1;58(3):535-48 - PubMed
  23. Nat Mater. 2003 Nov;2(11):715-25 - PubMed
  24. Am J Physiol Heart Circ Physiol. 2004 Jul;287(1):H196-202 - PubMed
  25. Am J Physiol Cell Physiol. 2004 Nov;287(5):C1184-91 - PubMed
  26. Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2390-5 - PubMed
  27. Physiol Genomics. 2005 Jun 16;22(1):1-7 - PubMed
  28. Anal Chem. 2005 Oct 15;77(20):6571-80 - PubMed
  29. Colloids Surf B Biointerfaces. 2006 Mar 1;48(1):6-12 - PubMed
  30. Am J Physiol Heart Circ Physiol. 2007 Mar;292(3):H1487-97 - PubMed
  31. Biochem Biophys Res Commun. 2007 Feb 23;353(4):1023-7 - PubMed
  32. Am J Physiol Heart Circ Physiol. 2007 Jul;293(1):H866-74 - PubMed
  33. Annu Rev Biophys Biomol Struct. 2007;36:233-60 - PubMed
  34. Nat Protoc. 2006;1(3):1453-7 - PubMed
  35. Physiol Rev. 2007 Apr;87(2):457-506 - PubMed
  36. Biochem Biophys Res Commun. 2007 Jun 15;357(4):889-95 - PubMed
  37. Cell Motil Cytoskeleton. 2007 Sep;64(9):718-25 - PubMed
  38. Biophys J. 2008 Mar 1;94(5):1854-66 - PubMed
  39. Exp Physiol. 2008 Mar;93(3):370-82 - PubMed
  40. Exp Biol Med (Maywood). 2008 Jul;233(7):792-809 - PubMed
  41. Biophys J. 2009 Feb;96(3):1189-209 - PubMed
  42. Circ Res. 2009 Mar 27;104(6):787-95 - PubMed
  43. Annu Rev Biomed Eng. 2009;11:203-33 - PubMed
  44. J Biomech. 2009 Sep 18;42(13):2143-50 - PubMed
  45. Am J Physiol Heart Circ Physiol. 2010 Mar;298(3):H853-60 - PubMed
  46. Physiol Rev. 1991 Apr;71(2):413-28 - PubMed
  47. J Cell Sci. 2010 Feb 1;123(Pt 3):297-308 - PubMed
  48. Int J Biomed Imaging. 2009;2009:352954 - PubMed
  49. J Mol Cell Cardiol. 1990 Oct;22(10):1083-93 - PubMed
  50. Pflugers Arch. 2011 Jul;462(1):105-17 - PubMed
  51. J R Soc Interface. 2011 Jul 6;8(60):913-25 - PubMed
  52. J Biol Chem. 2011 Oct 7;286(40):35007-19 - PubMed
  53. Science. 2011 Sep 9;333(6048):1440-5 - PubMed
  54. Am J Physiol Heart Circ Physiol. 2012 Jan 1;302(1):H38-50 - PubMed
  55. Pflugers Arch. 1987 Mar;408(3):315-7 - PubMed
  56. Biophys Rev. 2011 Jun;3(2):53-62 - PubMed
  57. Biophys J. 1977 Mar;17(3):213-28 - PubMed
  58. J Physiol. 1978 Mar;276:449-65 - PubMed
  59. IEEE Trans Biomed Eng. 1988 Apr;35(4):264-72 - PubMed
  60. Pflugers Arch. 1988 Apr;411(4):462-8 - PubMed
  61. Am J Physiol. 1987 Dec;253(6 Pt 2):H1484-91 - PubMed
  62. J Mol Cell Cardiol. 1987 Sep;19(9):897-907 - PubMed
  63. Am J Physiol. 1987 Feb;252(2 Pt 1):C253-62 - PubMed
  64. Nature. 1979 Apr 5;278(5704):573-5 - PubMed
  65. J Physiol. 1972 Dec;227(1):1-17 - PubMed
  66. Biophys J. 1973 Sep;13(9):857-76 - PubMed
  67. J Gen Physiol. 1974 Dec;64(6):623-42 - PubMed
  68. Nature. 1979 Dec 13;282(5740):728-9 - PubMed
  69. Am J Physiol. 1983 Feb;244(2):H167-77 - PubMed
  70. Biophys J. 1984 May;45(5):1007-16 - PubMed
  71. Acta Physiol Scand. 1980 May;109(1):15-26 - PubMed
  72. Biophys J. 1980 Apr;30(1):27-40 - PubMed
  73. Biophys J. 1981 Dec;36(3):759-73 - PubMed
  74. Science. 1980 Apr 11;208(4440):177-9 - PubMed
  75. J Cell Biol. 1980 Oct;87(1):204-8 - PubMed
  76. J Gen Physiol. 1980 Nov;76(5):587-607 - PubMed
  77. Cell Motil Cytoskeleton. 1995;31(3):225-40 - PubMed
  78. Circ Res. 1995 Dec;77(6):1060-9 - PubMed
  79. Am J Physiol. 1995 Jul;269(1 Pt 1):C275-85 - PubMed
  80. Am J Physiol. 1995 Jul;269(1 Pt 1):C286-92 - PubMed
  81. J Cell Biol. 1994 Dec;127(6 Pt 2):1957-64 - PubMed
  82. IEEE Trans Biomed Eng. 1993 Dec;40(12):1226-32 - PubMed
  83. Recent Adv Stud Cardiac Struct Metab. 1976;9:1-94 - PubMed
  84. Circ Res. 1993 Dec;73(6):1150-62 - PubMed
  85. Am J Physiol. 1994 Jan;266(1 Pt 1):C1-21 - PubMed
  86. Am J Physiol. 1993 Aug;265(2 Pt 2):H666-74 - PubMed
  87. J Appl Physiol (1985). 1993 Apr;74(4):2023-33 - PubMed
  88. Biophys J. 1996 Jan;70(1):38-47 - PubMed
  89. Am J Physiol. 1996 Feb;270(2 Pt 1):C697-704 - PubMed
  90. Biophys J. 1996 Oct;71(4):2158-67 - PubMed
  91. J Mol Cell Cardiol. 1997 Jan;29(1):11-25 - PubMed
  92. J Mechanochem Cell Motil. 1976 Mar;3(3):155-61 - PubMed
  93. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13661-5 - PubMed
  94. Cardiovasc Res. 1997 Dec;36(3):354-62 - PubMed
  95. Cell Mol Life Sci. 1998 Jun;54(6):597-605 - PubMed
  96. Mol Cell Biochem. 1998 Jul;184(1-2):81-100 - PubMed
  97. Cardiovasc Res. 1998 Aug;39(2):280-300 - PubMed

Publication Types