Display options
Share it on

Phys Rev Lett. 2017 Apr 14;118(15):151102. doi: 10.1103/PhysRevLett.118.151102. Epub 2017 Apr 11.

First Demonstration of Electrostatic Damping of Parametric Instability at Advanced LIGO.

Physical review letters

Carl Blair, Slawek Gras, Richard Abbott, Stuart Aston, Joseph Betzwieser, David Blair, Ryan DeRosa, Matthew Evans, Valera Frolov, Peter Fritschel, Hartmut Grote, Terra Hardwick, Jian Liu, Marc Lormand, John Miller, Adam Mullavey, Brian O'Reilly, Chunnong Zhao, B P Abbott, T D Abbott, C Adams, R X Adhikari, S B Anderson, A Ananyeva, S Appert, K Arai, S W Ballmer, D Barker, B Barr, L Barsotti, J Bartlett, I Bartos, J C Batch, A S Bell, G Billingsley, J Birch, S Biscans, C Biwer, R Bork, A F Brooks, G Ciani, F Clara, S T Countryman, M J Cowart, D C Coyne, A Cumming, L Cunningham, K Danzmann, C F Da Silva Costa, E J Daw, D DeBra, R DeSalvo, K L Dooley, S Doravari, J C Driggers, S E Dwyer, A Effler, T Etzel, T M Evans, M Factourovich, H Fair, A Fernández Galiana, R P Fisher, P Fulda, M Fyffe, J A Giaime, K D Giardina, E Goetz, R Goetz, C Gray, K E Gushwa, E K Gustafson, R Gustafson, E D Hall, G Hammond, J Hanks, J Hanson, G M Harry, M C Heintze, A W Heptonstall, J Hough, K Izumi, R Jones, S Kandhasamy, S Karki, M Kasprzack, S Kaufer, K Kawabe, N Kijbunchoo, E J King, P J King, J S Kissel, W Z Korth, G Kuehn, M Landry, B Lantz, N A Lockerbie, A P Lundgren, M MacInnis, D M Macleod, S Márka, Z Márka, A S Markosyan, E Maros, I W Martin, D V Martynov, K Mason, T J Massinger, F Matichard, N Mavalvala, R McCarthy, D E McClelland, S McCormick, G McIntyre, J McIver, G Mendell, E L Merilh, P M Meyers, R Mittleman, G Moreno, G Mueller, J Munch, L K Nuttall, J Oberling, P Oppermann, Richard J Oram, D J Ottaway, H Overmier, J R Palamos, H R Paris, W Parker, A Pele, S Penn, M Phelps, V Pierro, I Pinto, M Principe, L G Prokhorov, O Puncken, V Quetschke, E A Quintero, F J Raab, H Radkins, P Raffai, S Reid, D H Reitze, N A Robertson, J G Rollins, V J Roma, J H Romie, S Rowan, K Ryan, T Sadecki, E J Sanchez, V Sandberg, R L Savage, R M S Schofield, D Sellers, D A Shaddock, T J Shaffer, B Shapiro, P Shawhan, D H Shoemaker, D Sigg, B J J Slagmolen, B Smith, J R Smith, B Sorazu, A Staley, K A Strain, D B Tanner, R Taylor, M Thomas, P Thomas, K A Thorne, E Thrane, C I Torrie, G Traylor, G Vajente, G Valdes, A A van Veggel, A Vecchio, P J Veitch, K Venkateswara, T Vo, C Vorvick, M Walker, R L Ward, J Warner, B Weaver, R Weiss, P Weßels, B Willke, C C Wipf, J Worden, G Wu, H Yamamoto, C C Yancey, Hang Yu, Haocun Yu, L Zhang, M E Zucker, J Zweizig,

Affiliations

  1. University of Western Australia, Crawley, Western Australia 6009, Australia.
  2. Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
  3. California Institute of Technology, Pasadena 91125, USA.
  4. LIGO Livingston Observatory, Livingston, Louisiana 70754, USA.
  5. Max Planck Institute for Gravitational Physics, 30167 Hannover, Germany.
  6. Louisiana State University, Baton Rouge, Louisiana 70803, USA.
  7. LIGO, California Institute of Technology, Pasadena, California 91125, USA.
  8. American University, Washington, D.C. 20016, USA.
  9. University of Florida, Gainesville, Florida 32611, USA.
  10. University of Sannio at Benevento, I-82100 Benevento, Italy and INFN, Sezione di Napoli, I-80100 Napoli, Italy.
  11. Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik, D-30167 Hannover, Germany.
  12. LIGO, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
  13. Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India.
  14. International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore 560012, India.
  15. University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA.
  16. Leibniz Universität Hannover, D-30167 Hannover, Germany.
  17. Australian National University, Canberra, Australian Capital Territory 0200, Australia.
  18. The University of Mississippi, University, Mississippi 38677, USA.
  19. California State University Fullerton, Fullerton, California 92831, USA.
  20. Chennai Mathematical Institute, Chennai 603103, India.
  21. University of Southampton, Southampton SO17 1BJ, United Kingdom.
  22. Universität Hamburg, D-22761 Hamburg, Germany.
  23. Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik, D-14476 Potsdam-Golm, Germany.
  24. Montana State University, Bozeman, Montana 59717, USA.
  25. Syracuse University, Syracuse, New York 13244, USA.
  26. SUPA, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
  27. LIGO Hanford Observatory, Richland, Washington 99352, USA.
  28. Columbia University, New York, New York 10027, USA.
  29. Stanford University, Stanford, California 94305, USA.
  30. Center for Relativistic Astrophysics and School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
  31. University of Birmingham, Birmingham B15 2TT, United Kingdom.
  32. RRCAT, Indore, Madhya Pradesh 452013, India.
  33. Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia.
  34. SUPA, University of the West of Scotland, Paisley PA1 2BE, United Kingdom.
  35. Washington State University, Pullman, Washington 99164, USA.

PMID: 28452534 DOI: 10.1103/PhysRevLett.118.151102

Abstract

Interferometric gravitational wave detectors operate with high optical power in their arms in order to achieve high shot-noise limited strain sensitivity. A significant limitation to increasing the optical power is the phenomenon of three-mode parametric instabilities, in which the laser field in the arm cavities is scattered into higher-order optical modes by acoustic modes of the cavity mirrors. The optical modes can further drive the acoustic modes via radiation pressure, potentially producing an exponential buildup. One proposed technique to stabilize parametric instability is active damping of acoustic modes. We report here the first demonstration of damping a parametrically unstable mode using active feedback forces on the cavity mirror. A 15 538 Hz mode that grew exponentially with a time constant of 182 sec was damped using electrostatic actuation, with a resulting decay time constant of 23 sec. An average control force of 0.03 nN was required to maintain the acoustic mode at its minimum amplitude.

Publication Types