Display options
Share it on

Oncotarget. 2018 Jan 30;9(18):14268-14284. doi: 10.18632/oncotarget.24361. eCollection 2018 Mar 06.

Integrative proteomic and transcriptomic analysis provides evidence for TrkB (NTRK2) as a therapeutic target in combination with tyrosine kinase inhibitors for non-small cell lung cancer.

Oncotarget

Daniel Richard Gomez, Lauren Averett Byers, Monique Nilsson, Lixia Diao, Jing Wang, Lerong Li, Pan Tong, Mia Hofstad, Babita Saigal, Ignacio Wistuba, Neda Kalhor, Stephen Swisher, Youhong Fan, Waun Ki Hong, Milind Suraokar, Carmen Behrens, Cesar Moran, John Victor Heymach

Affiliations

  1. Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
  2. Department of Thoracic/Head and Neck Medical Oncology, University of Texas Anderson Cancer Center, Houston, TX, USA.
  3. Department of Bioinformatics and Computational Biology, Division of Quantitative Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
  4. Department of Translational Molecular Pathology, Division of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
  5. Department of Pathology Administration, Division of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
  6. Department of Thoracic and Cardiovascular Surgery, Division of Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA.

PMID: 29581842 PMCID: PMC5865668 DOI: 10.18632/oncotarget.24361

Abstract

While several molecular targets have been identified for adenocarcinoma (ACA) of the lung, similar drivers with squamous cell carcinoma (SCC) are sparse. We compared signaling pathways and potential therapeutic targets in lung SCC and ACA tumors using reverse phase proteomic arrays (RPPA) from two independent cohorts of resected early stage NSCLC patients: a testing set using an MDACC cohort (N=140) and a validation set using the Cancer Genome Atlas (TCGA) cohorts. We identified multiple potentially targetable proteins upregulated in SCC, including NRF2, Keap1, PARP, TrkB, and Chk2. Of these potential targets, we found that TrkB also had significant increases in gene expression in SCC as compared to adenocarcinoma. Thus, we next validated the upregulation of TrkB both

Keywords: TrkB; lung cancer; proteomics; squamous cell carcinoma

Conflict of interest statement

CONFLICTS OF INTEREST The authors declare no conflicts of interest.

References

  1. Bioinformatics. 2003 Jul 1;19(10):1236-42 - PubMed
  2. Nature. 2004 Aug 26;430(7003):1034-9 - PubMed
  3. Nat Med. 2004 Nov;10(11):1251-6 - PubMed
  4. J Natl Cancer Inst. 2005 Mar 2;97(5):339-46 - PubMed
  5. Mol Cancer Ther. 2005 May;4(5):726-32 - PubMed
  6. N Engl J Med. 2005 Jul 14;353(2):123-32 - PubMed
  7. Cancer Res. 2005 Sep 1;65(17):7568-72 - PubMed
  8. Methods Enzymol. 2005;403:202-15 - PubMed
  9. Clin Cancer Res. 2006 Aug 15;12(16):4989-99 - PubMed
  10. Int J Oncol. 2006 Oct;29(4):1003-11 - PubMed
  11. Mol Cancer Ther. 2006 Oct;5(10):2512-21 - PubMed
  12. Bioinformatics. 2007 Aug 1;23(15):1986-94 - PubMed
  13. Int J Biol Sci. 2008 Jul 23;4(4):202-7 - PubMed
  14. Sci Signal. 2009 Jan 27;2(55):ra4 - PubMed
  15. Lancet. 2009 May 2;373(9674):1525-31 - PubMed
  16. Nat Rev Drug Discov. 2009 Jul;8(7):547-66 - PubMed
  17. Traffic. 2009 Nov;10(11):1561-8 - PubMed
  18. Am J Clin Pathol. 2010 Jan;133(1):133-40 - PubMed
  19. Clin Cancer Res. 2010 Apr 15;16(8):2458-65 - PubMed
  20. Cancer Res. 2010 Jun 15;70(12):4972-81 - PubMed
  21. J Thorac Oncol. 2010 Dec;5(12):1894-904 - PubMed
  22. Clin Cancer Res. 2011 May 1;17(9):2638-45 - PubMed
  23. Int J Biol Sci. 2011;7(5):664-72 - PubMed
  24. Cell Death Differ. 2012 May;19(5):768-78 - PubMed
  25. Ann Oncol. 2012 Aug;23(8):2088-93 - PubMed
  26. PLoS One. 2012;7(2):e31087 - PubMed
  27. J Gastroenterol. 2012 Jul;47(7):775-84 - PubMed
  28. J Clin Invest. 2012 May;122(5):1869-80 - PubMed
  29. Ann Oncol. 2012 Nov;23(11):2834-42 - PubMed
  30. Biochem Biophys Res Commun. 2012 Aug 24;425(2):328-32 - PubMed
  31. Lung Cancer. 2012 Oct;78(1):100-6 - PubMed
  32. Cancer Discov. 2012 Sep;2(9):798-811 - PubMed
  33. Clin Cancer Res. 2013 Jan 1;19(1):279-90 - PubMed
  34. J Thorac Oncol. 2013 Jan;8(1):89-95 - PubMed
  35. Clin Cancer Res. 2013 Mar 15;19(6):1577-86 - PubMed
  36. Cell Prolif. 2013 Apr;46(2):146-52 - PubMed
  37. Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6524-9 - PubMed
  38. Bioorg Med Chem. 2013 Jul 15;21(14):4011-9 - PubMed
  39. Cell Cycle. 2013 Jun 1;12(11):1696-703 - PubMed
  40. Cancer Chemother Pharmacol. 2013 Sep;72(3):619-27 - PubMed
  41. Nat Genet. 2013 Oct;45(10):1113-20 - PubMed
  42. Clin Cancer Res. 2013 Nov 15;19(22):6322-8 - PubMed
  43. J Thorac Dis. 2013 Oct;5(5):585-92 - PubMed
  44. Cancer Chemother Pharmacol. 2014 Mar;73(3):539-49 - PubMed
  45. Nat Commun. 2014 May 29;5:3887 - PubMed
  46. J Clin Oncol. 2014 Jul 1;32(19):2059-66 - PubMed
  47. PLoS One. 2014 Jun 24;9(6):e100944 - PubMed
  48. Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10299-304 - PubMed
  49. Mol Clin Oncol. 2014 Sep;2(5):725-730 - PubMed
  50. Cell. 2014 Aug 14;158(4):929-944 - PubMed
  51. Cancer Discov. 2015 Jan;5(1):25-34 - PubMed
  52. Nature. 2015 Jan 29;517(7536):576-82 - PubMed
  53. Clin Cancer Res. 2015 Aug 1;21(15):3480-91 - PubMed
  54. N Engl J Med. 2015 May 21;372(21):2018-28 - PubMed
  55. N Engl J Med. 2015 Jul 9;373(2):123-35 - PubMed
  56. Lancet Oncol. 2015 Jul;16(7):763-74 - PubMed
  57. Cancer Discov. 2015 Aug;5(8):860-77 - PubMed
  58. Lancet Oncol. 2015 Aug;16(8):897-907 - PubMed
  59. Clin Cancer Res. 2016 Feb 1;22(3):609-20 - PubMed
  60. N Engl J Med. 1993 Mar 25;328(12):847-54 - PubMed
  61. Genes Dev. 1999 Jan 1;13(1):76-86 - PubMed

Publication Types

Grant support