Display options
Share it on

Lab Chip. 2018 Aug 21;18(17):2653-2664. doi: 10.1039/c8lc00496j.

A flow focusing microfluidic device with an integrated Coulter particle counter for production, counting and size characterization of monodisperse microbubbles.

Lab on a chip

J M Robert Rickel, Adam J Dixon, Alexander L Klibanov, John A Hossack

Affiliations

  1. Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA. [email protected].

PMID: 30070301 PMCID: PMC6566100 DOI: 10.1039/c8lc00496j

Abstract

Flow focusing microfluidic devices (FFMDs) have been investigated for the production of monodisperse populations of microbubbles for chemical, biomedical and mechanical engineering applications. High-speed optical microscopy is commonly used to monitor FFMD microbubble production parameters, such as diameter and production rate, but this limits the scalability and portability of the approach. In this work, a novel FFMD design featuring integrated electronics for measuring microbubble diameters and production rates is presented. A micro Coulter particle counter (μCPC), using electrodes integrated within the expanding nozzle of an FFMD (FFMD-μCPC), was designed, fabricated and tested. Finite element analysis (FEA) of optimal electrode geometry was performed and validated with experimental data. Electrical data was collected for 8-20 μm diameter microbubbles at production rates up to 3.25 × 105 MB s-1 and compared to both high-speed microscopy data and FEA simulations. Within a valid operating regime, Coulter counts of microbubble production rates matched optical reference values. The Coulter method agreed with the optical reference method in evaluating the microbubble diameter to a coefficient of determination of R2 = 0.91.

References

  1. Electrophoresis. 2000 Jan;21(1):27-40 - PubMed
  2. Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):10687-90 - PubMed
  3. Chem Rev. 2000 Jul 12;100(7):2575-2594 - PubMed
  4. Phys Rev Lett. 2001 Dec 31;87(27 Pt 1):274501 - PubMed
  5. Electrophoresis. 2003 Nov;24(21):3563-76 - PubMed
  6. Lab Chip. 2003 Aug;3(3):187-92 - PubMed
  7. Lab Chip. 2001 Sep;1(1):76-82 - PubMed
  8. Lab Chip. 2004 Jun;4(3):241-51 - PubMed
  9. N Engl J Med. 2004 Nov 18;351(21):2170-8 - PubMed
  10. Cytometry A. 2005 Jun;65(2):124-32 - PubMed
  11. Lab Chip. 2005 Oct;5(10):1155-60 - PubMed
  12. Stroke. 2006 Feb;37(2):425-9 - PubMed
  13. Lab Chip. 2006 Mar;6(3):437-46 - PubMed
  14. J Control Release. 2006 May 15;112(2):149-55 - PubMed
  15. Lab Chip. 2007 Apr;7(4):463-8 - PubMed
  16. Rev Sci Instrum. 2007 May;78(5):054301 - PubMed
  17. Langmuir. 2008 Mar 4;24(5):1745-9 - PubMed
  18. Electrophoresis. 2008 Jul;29(13):2754-9 - PubMed
  19. Lab Chip. 2009 Apr 7;9(7):972-81 - PubMed
  20. J Virol. 1977 Aug;23(2):227-33 - PubMed
  21. Cytometry A. 2010 Jul;77(7):648-66 - PubMed
  22. Lab Chip. 2011 Feb 7;11(3):407-12 - PubMed
  23. Nat Nanotechnol. 2011 May;6(5):308-13 - PubMed
  24. Lab Chip. 2011 Jun 21;11(12):2023-9 - PubMed
  25. Ultrasound Med Biol. 2011 Nov;37(11):1952-7 - PubMed
  26. Lab Chip. 2011 Dec 7;11(23):3990-8 - PubMed
  27. Microfluid Nanofluidics. 2013 Mar 1;14(3-4):457-467 - PubMed
  28. Ultrasound Med Biol. 2013 Jul;39(7):1267-76 - PubMed
  29. Electrophoresis. 2015 Feb;36(4):495-501 - PubMed
  30. N Engl J Med. 2015 Jan 1;372(1):11-20 - PubMed
  31. Sensors (Basel). 2015 Jan 26;15(2):2694-708 - PubMed
  32. Biomed Microdevices. 2015 Feb;17(1):23 - PubMed
  33. Lab Chip. 2016 Jun 21;16(12):2326-38 - PubMed
  34. Lab Chip. 2016 Jul 7;16(13):2467-73 - PubMed
  35. Ann Biomed Eng. 2018 Feb;46(2):222-232 - PubMed
  36. Am Heart J. 1987 Sep;114(3):570-5 - PubMed
  37. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13770-3 - PubMed
  38. Invest Radiol. 1997 Dec;32(12):735-40 - PubMed
  39. Circulation. 1998 Feb 10;97(5):473-83 - PubMed

MeSH terms

Publication Types

Grant support