Display options
Share it on

Sci Rep. 2018 Jul 31;8(1):11492. doi: 10.1038/s41598-018-29904-7.

Tissue-specific Network Analysis of Genetic Variants Associated with Coronary Artery Disease.

Scientific reports

Xiao Miao, Xinlin Chen, Zhijun Xie, Honghuang Lin

Affiliations

  1. Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China. [email protected].
  2. Department of Cardiovascular Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
  3. College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China.
  4. Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
  5. Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA. [email protected].

PMID: 30065343 PMCID: PMC6068195 DOI: 10.1038/s41598-018-29904-7

Abstract

Coronary artery disease (CAD) is a leading cause of death worldwide. Recent genome-wide association studies have identified more than one hundred susceptibility loci associated with CAD. However, the underlying mechanism of these genetic loci to CAD susceptibility is still largely unknown. We performed a tissue-specific network analysis of CAD using the summary statistics from one of the largest genome-wide association studies. Variant-level associations were summarized into gene-level associations, and a CAD-related interaction network was built using experimentally validated gene interactions and gene coexpression in coronary artery. The network contained 102 genes, of which 53 were significantly associated with CAD. Pathway enrichment analysis revealed that many genes in the network were involved in the regulation of peripheral arteries. In summary, we performed a tissue-specific network analysis and found abnormalities in the peripheral arteries might be an important pathway underlying the pathogenesis of CAD. Future functional characterization might further validate our findings and identify potential therapeutic targets for CAD.

References

  1. Nature. 2003 Dec 18;426(6968):895-9 - PubMed
  2. Lancet. 2001 Jul 14;358(9276):115-9 - PubMed
  3. Nucleic Acids Res. 2013 Jul;41(Web Server issue):W77-83 - PubMed
  4. Sci Rep. 2018 Feb 21;8(1):3434 - PubMed
  5. World J Cardiol. 2016 Jan 26;8(1):1-23 - PubMed
  6. Cardiovasc Res. 2006 Jun 1;70(3):410-21 - PubMed
  7. Nat Genet. 2015 Jun;47(6):569-76 - PubMed
  8. Nat Genet. 2011 Mar 06;43(4):333-8 - PubMed
  9. Arteriosclerosis. 1988 Jan-Feb;8(1):1-21 - PubMed
  10. Bioinformatics. 2002;18 Suppl 1:S233-40 - PubMed
  11. Genomics. 2008 Nov;92(5):255-64 - PubMed
  12. Sci STKE. 2005 Apr 26;2005(281):re5 - PubMed
  13. FEBS Lett. 2002 Feb 20;513(1):135-40 - PubMed
  14. Nat Rev Genet. 2010 Jan;11(1):31-46 - PubMed
  15. Science. 2007 Jun 8;316(5830):1491-3 - PubMed
  16. JAMA. 2004 May 12;291(18):2204-11 - PubMed
  17. Bioinformatics. 2011 Jan 1;27(1):95-102 - PubMed
  18. FEBS Lett. 2000 Jan 28;466(2-3):377-80 - PubMed
  19. Eur Heart J. 2016 Nov 7;37(42):3232-3245 - PubMed
  20. Epigenomics. 2012 Jun;4(3):317-24 - PubMed
  21. Gene. 2016 Sep 15;590(1):68-78 - PubMed
  22. Circ Res. 2004 Aug 6;95(3):284-91 - PubMed
  23. N Engl J Med. 2011 Dec 1;365(22):2098-109 - PubMed
  24. Nat Genet. 2017 Sep;49(9):1385-1391 - PubMed
  25. Nature. 2012 Sep 6;489(7414):57-74 - PubMed
  26. Genome Res. 2009 Jun;19(6):1093-106 - PubMed
  27. Eur J Prev Cardiol. 2015 Oct;22(10):1321-7 - PubMed
  28. Sci Rep. 2013 Dec 05;3:3426 - PubMed
  29. EMBO J. 1985 Mar;4(3):755-9 - PubMed
  30. Nat Genet. 2013 Jan;45(1):25-33 - PubMed
  31. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D452-5 - PubMed
  32. Sci Rep. 2016 Sep 08;6:32894 - PubMed
  33. N Engl J Med. 2015 Sep 3;373(10):895-907 - PubMed
  34. JAMA. 2008 Nov 26;300(20):2389-97 - PubMed
  35. Nucleic Acids Res. 2012 Jan;40(Database issue):D862-5 - PubMed
  36. Genome Res. 2004 Jan;14(1):54-61 - PubMed
  37. Science. 2007 Jun 8;316(5830):1488-91 - PubMed
  38. J Am Coll Cardiol. 2017 Feb 21;69(7):823-836 - PubMed
  39. Cell Res. 2009 Jan;19(1):116-27 - PubMed
  40. Lancet. 2016 Oct 8;388(10053):1459-1544 - PubMed
  41. J Mol Endocrinol. 2013 Dec 19;52(1):R79-93 - PubMed
  42. BioData Min. 2016 Jan 19;9:3 - PubMed
  43. Arterioscler Thromb. 1994 Oct;14(10):1617-24 - PubMed
  44. J Mol Cell Cardiol. 2006 Oct;41(4):567-79 - PubMed
  45. Nature. 2007 Jun 7;447(7145):661-78 - PubMed
  46. N Engl J Med. 2007 Aug 2;357(5):443-53 - PubMed
  47. Circulation. 2017 Mar 7;135(10):e146-e603 - PubMed
  48. Philos Trans R Soc Lond B Biol Sci. 2013 May 06;368(1620):20120362 - PubMed
  49. Nat Genet. 2015 Oct;47(10):1121-1130 - PubMed
  50. Lancet Diabetes Endocrinol. 2015 Jul;3(7):507-13 - PubMed
  51. Heart Rhythm. 2014 Feb;11(2):266-71 - PubMed
  52. J Lipid Res. 1993 Apr;34(4):521-41 - PubMed
  53. Nat Genet. 2012 Mar 18;44(4):369-75, S1-3 - PubMed
  54. Proc Natl Acad Sci U S A. 1980 Jan;77(1):604-8 - PubMed
  55. Nat Genet. 2011 Mar 06;43(4):339-44 - PubMed
  56. BMC Bioinformatics. 2008 Sep 30;9:405 - PubMed
  57. Nucleic Acids Res. 2014 Jan;42(Database issue):D1091-7 - PubMed
  58. Circ Res. 2004 Jan 9;94(1):110-8 - PubMed
  59. Nucleic Acids Res. 2018 Jan 4;46(D1):D1074-D1082 - PubMed
  60. Cell Rep. 2017 Oct 24;21(4):1077-1088 - PubMed
  61. Science. 2015 May 8;348(6235):648-60 - PubMed

MeSH terms

Publication Types