Display options
Share it on

ACS Omega. 2019 Sep 10;4(13):15665-15677. doi: 10.1021/acsomega.9b02138. eCollection 2019 Sep 24.

Synthetic Toll-like Receptors 7 and 8 Agonists: Structure-Activity Relationship in the Oxoadenine Series.

ACS omega

Jay T Evans, Laura S Bess, Sandra C Mwakwari, Mark T Livesay, Yufeng Li, Van Cybulski, David A Johnson, Hélène G Bazin

Affiliations

  1. GSK Vaccines, 553 Old Corvallis Road, Hamilton, Montana 59840, United States.
  2. Division of Biological Sciences and Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana 59802, United States.

PMID: 31572869 PMCID: PMC6761749 DOI: 10.1021/acsomega.9b02138

Abstract

Toll-like receptors 7 and 8 (TLR7/8) are broadly expressed on antigen-presenting cells, making TLR7/8 agonists likely candidates for the development of new vaccine adjuvants. We previously reported the synthesis of a new series of 8-oxoadenines substituted at the 9-position with a 4-piperidinylalkyl moiety and demonstrated that TLR7/8 selectivity and potency could be modulated by varying the length of the alkyl linker. In the present study, we broadened our initial structure-activity relationship study to further evaluate the effects of N-heterocycle ring size, chirality, and substitution on TLR7/8 potency, receptor selectivity, and cytokine (IFNα and TNFα) induction from human peripheral blood mononuclear cells (PBMCs). TLR7/8 activity correlated primarily to linker length and to a lesser extent to ring size, while ring chirality had little effect on TLR7/8 potency or selectivity. Substitution of the heterocyclic ring with an aminoalkyl or hydroxyalkyl group for subsequent conjugation to phospholipids or antigens was well tolerated with the retention of both TLR7/8 activity and cytokine induction from human PBMCs.

Copyright © 2019 American Chemical Society.

Conflict of interest statement

The authors declare the following competing financial interest(s): All authors were employees of the GSK group of companies at the time when the TLR7/8 agonists described here were first prepared and

References

  1. J Med Chem. 2002 Dec 5;45(25):5419-22 - PubMed
  2. Vaccine. 2011 Jun 15;29(27):4453-9 - PubMed
  3. Br J Cancer. 1996 Nov;74(9):1482-6 - PubMed
  4. Bioorg Med Chem. 2003 Dec 1;11(24):5501-8 - PubMed
  5. J Med Chem. 2016 Mar 10;59(5):1711-26 - PubMed
  6. Vaccine. 2006 Nov 30;24(49-50):7167-74 - PubMed
  7. Expert Rev Vaccines. 2013 Jul;12(7):809-19 - PubMed
  8. Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):3990-5 - PubMed
  9. Vaccine. 2017 Sep 18;35(39):5256-5263 - PubMed
  10. Vaccine. 2016 Aug 5;34(36):4304-12 - PubMed
  11. Chem Biodivers. 2005 Aug;2(8):977-1063 - PubMed
  12. Immunol Lett. 2015 Nov;168(1):89-97 - PubMed
  13. Bioconjug Chem. 2015 Aug 19;26(8):1713-23 - PubMed
  14. NPJ Vaccines. 2017 Sep 8;2:25 - PubMed
  15. Bioorg Med Chem Lett. 2013 Feb 1;23(3):669-72 - PubMed
  16. Bioconjug Chem. 2011 Mar 16;22(3):445-54 - PubMed
  17. J Med Chem. 2005 May 19;48(10):3481-91 - PubMed
  18. Chem Pharm Bull (Tokyo). 2003 May;51(5):608-11 - PubMed
  19. Semin Cell Dev Biol. 2015 May;41:39-48 - PubMed
  20. Proc Natl Acad Sci U S A. 2006 Feb 7;103(6):1828-33 - PubMed
  21. Mol Immunol. 2017 Nov;91:202-208 - PubMed
  22. Vaccine. 2015 Sep 29;33(40):5302-7 - PubMed
  23. Vaccine. 2009 Jul 16;27(33):4381-7 - PubMed
  24. J Exp Med. 2010 Jun 7;207(6):1261-71 - PubMed
  25. Sci Rep. 2017 Apr 21;7:46426 - PubMed
  26. Nat Rev Immunol. 2013 Jun;13(6):453-60 - PubMed
  27. Blood. 2011 May 26;117(21):5683-91 - PubMed
  28. Bioorg Med Chem. 2003 Aug 15;11(17):3641-7 - PubMed
  29. Proc Natl Acad Sci U S A. 2003 May 27;100(11):6646-51 - PubMed
  30. Eur J Immunol. 2003 Nov;33(11):2987-97 - PubMed
  31. J Clin Immunol. 2012 Oct;32(5):1082-92 - PubMed
  32. Proc Natl Acad Sci U S A. 2005 Oct 18;102(42):15190-4 - PubMed
  33. Bioorg Med Chem Lett. 2006 Sep 1;16(17):4559-63 - PubMed
  34. J Immunol. 2005 Jun 15;174(12):7676-83 - PubMed
  35. J Med Chem. 2006 Mar 23;49(6):2088-95 - PubMed
  36. Bioconjug Chem. 2009 Jun;20(6):1194-200 - PubMed
  37. J Infect Dis. 1998 Sep;178(3):858-61 - PubMed
  38. Bioorg Med Chem Lett. 2006 Jun 15;16(12):3258-61 - PubMed
  39. J Immunol Res. 2016;2016:1459394 - PubMed
  40. Curr Opin Immunol. 2014 Jun;28:1-5 - PubMed
  41. Vaccine. 2012 Jun 19;30(29):4341-8 - PubMed
  42. Bioorg Med Chem. 2004 Mar 1;12(5):1091-9 - PubMed
  43. Hum Vaccin Immunother. 2016;12(1):159-69 - PubMed
  44. Bioorg Med Chem Lett. 2015 Mar 15;25(6):1318-23 - PubMed
  45. Bioorg Med Chem. 2009 Apr 1;17(7):2812-22 - PubMed
  46. Blood. 2005 Oct 1;106(7):2424-32 - PubMed
  47. Immunity. 2013 Oct 17;39(4):711-21 - PubMed
  48. Eur J Med Chem. 2016 Sep 14;120:111-20 - PubMed
  49. Eur J Pharm Biopharm. 2014 Jul;87(2):310-7 - PubMed
  50. Nat Immunol. 2002 Feb;3(2):196-200 - PubMed
  51. Expert Rev Vaccines. 2012 Mar;11(3):349-66 - PubMed
  52. Methods Mol Biol. 2017;1494:15-27 - PubMed
  53. Cytokine. 2015 Aug;74(2):181-9 - PubMed
  54. J Med Chem. 2010 Apr 8;53(7):2964-72 - PubMed
  55. Nature. 2005 Apr 7;434(7034):772-7 - PubMed
  56. Bioorg Med Chem Lett. 2011 Jun 1;21(11):3232-6 - PubMed
  57. Annu Rev Immunol. 2015;33:257-90 - PubMed
  58. Vaccine. 2011 Jul 26;29(33):5434-42 - PubMed
  59. Hum Vaccin Immunother. 2013 Jul;9(7):1523-31 - PubMed
  60. J Antimicrob Chemother. 2012 Apr;67(4):789-801 - PubMed

Publication Types