Display options
Share it on

Proc Natl Acad Sci U S A. 2019 Dec 16; doi: 10.1073/pnas.1909970117. Epub 2019 Dec 16.

Microbial chemolithotrophy mediates oxidative weathering of granitic bedrock.

Proceedings of the National Academy of Sciences of the United States of America

Stephanie A Napieralski, Heather L Buss, Susan L Brantley, Seungyeol Lee, Huifang Xu, Eric E Roden

Affiliations

  1. Department of Geoscience, NASA Astrobiology Institute, University of Wisconsin-Madison, Madison, WI 53706; [email protected] [email protected].
  2. School of Earth Sciences, University of Bristol, BS8 1RJ Bristol, United Kingdom.
  3. Earth and Environmental Systems Institute, Pennsylvania State University, University Park, PA 16802.
  4. Department of Geosciences, Pennsylvania State University, University Park, PA 16802.
  5. Department of Geoscience, NASA Astrobiology Institute, University of Wisconsin-Madison, Madison, WI 53706.

PMID: 31843926 PMCID: PMC6936594 DOI: 10.1073/pnas.1909970117

Abstract

The flux of solutes from the chemical weathering of the continental crust supplies a steady supply of essential nutrients necessary for the maintenance of Earth's biosphere. Promotion of weathering by microorganisms is a well-documented phenomenon and is most often attributed to heterotrophic microbial metabolism for the purposes of nutrient acquisition. Here, we demonstrate the role of chemolithotrophic ferrous iron [Fe(II)]-oxidizing bacteria in biogeochemical weathering of subsurface Fe(II)-silicate minerals at the Luquillo Critical Zone Observatory in Puerto Rico. Under chemolithotrophic growth conditions, mineral-derived Fe(II) in the Rio Blanco Quartz Diorite served as the primary energy source for microbial growth. An enrichment in homologs to gene clusters involved in extracellular electron transfer was associated with dramatically accelerated rates of mineral oxidation and adenosine triphosphate generation relative to sterile diorite suspensions. Transmission electron microscopy and energy-dispersive spectroscopy revealed the accumulation of nanoparticulate Fe-oxyhydroxides on mineral surfaces only under biotic conditions. Microbially oxidized quartz diorite showed greater susceptibility to proton-promoted dissolution, which has important implications for weathering reactions in situ. Collectively, our results suggest that chemolithotrophic Fe(II)-oxidizing bacteria are likely contributors in the transformation of rock to regolith.

Keywords: chemolithotrophy; critical zone; weathering

Conflict of interest statement

The authors declare no competing interest.

References

  1. Philos Trans A Math Phys Eng Sci. 2011 Feb 13;369(1936):516-37 - PubMed
  2. Trends Microbiol. 2009 Aug;17(8):378-87 - PubMed
  3. J Biol Chem. 2008 Sep 19;283(38):25803-11 - PubMed
  4. ISME J. 2011 Nov;5(11):1748-58 - PubMed
  5. Appl Environ Microbiol. 1999 Nov;65(11):4781-7 - PubMed
  6. Nature. 2008 May 29;453(7195):653-6 - PubMed
  7. J Biol Chem. 1995 Nov 10;270(45):26723-6 - PubMed
  8. PLoS One. 2013;8(2):e55929 - PubMed
  9. Astrobiology. 2015 May;15(5):331-40 - PubMed
  10. Environ Sci Technol. 2001 Apr 15;35(8):1644-50 - PubMed
  11. Environ Sci Technol. 2016 Jun 7;50(11):5589-96 - PubMed
  12. Microb Ecol. 1994 May;27(3):241-51 - PubMed
  13. Front Microbiol. 2017 Mar 10;8:363 - PubMed
  14. Front Microbiol. 2012 Apr 04;3:134 - PubMed
  15. J Bacteriol. 2012 Nov;194(22):6331 - PubMed
  16. Adv Microb Physiol. 2004;49:219-86 - PubMed
  17. Appl Environ Microbiol. 2012 Oct;78(19):7114-9 - PubMed
  18. Appl Environ Microbiol. 2015 Sep 1;81(17):5927-37 - PubMed
  19. Genome Biol. 2014 Mar 03;15(3):R46 - PubMed
  20. Appl Environ Microbiol. 2012 Aug;78(16):5746-52 - PubMed
  21. J Geophys Res. 1998 Aug 25;103(E8):19359-64 - PubMed
  22. Science. 1980 Mar 14;207(4436):1205-6 - PubMed
  23. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3404-11 - PubMed
  24. Bioinformatics. 2012 Jun 1;28(11):1420-8 - PubMed
  25. Appl Environ Microbiol. 2005 Aug;71(8):4487-96 - PubMed
  26. Front Microbiol. 2012 Feb 08;3:37 - PubMed
  27. Appl Environ Microbiol. 1996 Feb;62(2):316-22 - PubMed
  28. Genome Res. 2015 Jul;25(7):1043-55 - PubMed
  29. Microb Ecol. 1988 Jul;16(1):73-84 - PubMed
  30. Appl Environ Microbiol. 2010 Jul;76(14):4788-96 - PubMed
  31. Science. 1968 Dec 20;162(3860):1401-2 - PubMed
  32. Microbiome. 2018 Sep 15;6(1):158 - PubMed
  33. J Mol Biol. 1990 Oct 5;215(3):403-10 - PubMed
  34. Front Genet. 2013 Nov 29;4:237 - PubMed
  35. Front Microbiol. 2017 Aug 21;8:1584 - PubMed
  36. PeerJ. 2015 Aug 27;3:e1165 - PubMed

Publication Types