Display options
Share it on

Sci Rep. 2020 Jan 14;10(1):274. doi: 10.1038/s41598-019-56988-6.

Superdirective dimers of coupled self-resonant split ring resonators: Analytical modelling and numerical and experimental validation.

Scientific reports

A Vallecchi, A Radkovskaya, L Li, G Faulkner, C J Stevens, E Shamonina

Affiliations

  1. Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, United Kingdom. [email protected].
  2. Magnetism Division, Faculty of Physics, M. V. Lomonosov Moscow State University, Leninskie Gory, Moscow, 119992, Russia.
  3. Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, United Kingdom.
  4. Insight Lifetech, Shenzhen, 518052, P.R. China.

PMID: 31937860 PMCID: PMC6959271 DOI: 10.1038/s41598-019-56988-6

Abstract

Superdirective antennas developed over the last century have received renewed interest in recent years from the development of metamaterials. These arrays of electromagnetic resonators (or meta-atoms) carrying short wavelength electro- and/or magneto-inductive waves support current distributions with very high spatial frequency as required by the classical conditions for superdirectivity. As meta-atoms can have both electric and magnetic dipole characteristics (and hence radiation properties), developing antennas exploiting these distributions can challenge conventional intuitions regarding the optimal configurations required. In this work we are reporting the development of a genuinely superdirective array using split ring resonators (SRRs). We provide a comprehensive analytical model characterizing the radiation from SRR dimers in which excitation of only one split ring leads to superdirective radiation via mutually coupled modes. Our model exploits simple circuit descriptions of coupled resonant circuits, combined with standard radiation formulae for curvilinear current distributions. Using this simple model we are able to map directivity against possible SRR locations and orientations in two dimensions and identify the unique optimal configuration which meets the requirements for superdirective emission. We validate the theoretical findings by comparison to both full wave simulations and experiments showing that our SRR dimer achieves endfire directivity very close to the maximum theoretical value.

References

  1. Spyropoulos, A. & Raghavendra, C. S. Energy efficient communications in ad hoc networks using directional antennas. Proceedings.Twenty-First Annu. Jt. Conf. IEEE Computer Commun. Societies 1, 220–228, https://doi.org/10.1109/INFCOM.2002.1019263 (2002). - PubMed
  2. Mailloux, R. J. Phased Array Antenna Handbook, Third Edition. Artech House antennas and electromagnetics analysis library (Artech House Publishers, 2017). - PubMed
  3. Hansen, R. C. Electrically Small, Superdirective, and Superconductive Antennas (Wiley, 2006). - PubMed
  4. Oseen, C. W. Die Einsteinsche Nadelstichstrahlung und die Maxwellschen Gleichungen. Annalen der Phys. 374, 202–204 (1922). - PubMed
  5. Bouwkamp, C. J. & de Bruijn, N. G. The problem of optimum antenna current distribution. Philips Res. Rep. 1, 135–158 (1946). - PubMed
  6. Uzkov, A. I. An approach to the problem of optimum directive antenna design. Comptes Rendus (Doklady) de. l’ Academie des. Sci. de l’URSS 53, 35–38 (1946). - PubMed
  7. Balanis, C. A. Antenna Theory: Analysis and Design, 318, 4th edn (John Wiley & Sons, Hoboken, New Jersey, 2016). - PubMed
  8. Uzsoky, M. & Solymar, L. Theory of superdirective linear arrays. Acta. Phys. Acad. Hung. Sci. 6, 185–205 (1956). - PubMed
  9. Bloch, A., Medhurst, R. G. & Pool, S. D. A new approach to the design of super-directive aerial arrays. Proc. IEE-Part III: Radio. Commun. Eng. 100, 303–314 (1953). - PubMed
  10. Margetis, D., Fikioris, G., Myers, J. M. & Wu, T. T. Highly directive current distributions: General theory. Phys. Rev. E 58, 2531 (1998). - PubMed
  11. Azevedo, J. A. R. Synthesis of planar arrays with elements in concentric rings. IEEE Trans. Antennas Propag. 59, 839–845, https://doi.org/10.1109/TAP.2010.2102999 (2011). - PubMed
  12. Shamonina, E. & Solymar, L. Maximum directivity of arbitrary dipole arrays. IET Microwaves, Antennas & Propag. 9, 101–107 (2014). - PubMed
  13. Altshuler, E. E., O’Donnell, T. H. & Yaghjian, A. D. A superdirective array using very small genetic antennas. Digest, URSI General Assembly, Maestricht (2002). - PubMed
  14. Altshuler, E. E., O’Donnell, T. H., Yaghjian, A. D. & Best, S. R. A monopole superdirective array. IEEE Trans. Antennas Propag. 53, 2653–2661 (2005). - PubMed
  15. Buell, K., Mosallaei, H. & Sarabandi, K. Metamaterial insulator enabled superdirective array. IEEE Trans. Antennas Propag. 55, 1074–1085 (2007). - PubMed
  16. Kokkinos, T. & Feresidis, A. P. Electrically small superdirective endfire arrays of metamaterial-inspired low-profile monopoles. IEEE Antennas Wirel. Propag. Lett. 11, 568–571 (2012). - PubMed
  17. O’Donnell, T. H. & Yaghjian, A. D. Electrically small superdirective arrays using parasitic elements. In Antennas and Propagation Society International Symposium 2006, IEEE, 3111–3114 (IEEE, 2006). - PubMed
  18. Yaghjian, A. D., O’Donnell, T. H., Altshuler, E. E. & Best, S. R. Electrically small supergain end-fire arrays. Radio Science 43 (2008). - PubMed
  19. Sentucq, B., Sharaiha, A. & Collardey, S. Superdirective metamaterial-inspired electrically small antenna arrays. In 7th European Conference on Antennas and Propagation (EuCAP 2013), 151–155 (2013). - PubMed
  20. Shamonina, E. & Solymar, L. Superdirectivity by virtue of coupling between meta-atoms. In Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS), 2013 7th International Congress on, 97–99 (IEEE, 2013). - PubMed
  21. Pigeon, M., Sharaiha, A. & Collardey, S. Miniature and superdirective two elements endfire antenna array. In 8th European Conference on Antennas and Propagation (EuCAP 2014), 6–11 (2014). - PubMed
  22. Shamonina, E. & Solymar, L. Superdirective “meta-molecules”. In Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS), 2014 8th International Congress on, 268–270 (IEEE, 2014). - PubMed
  23. Haskou, A., Sharaiha, A. & Collardey, S. Design of small parasitic loaded superdirective end-fire antenna arrays. IEEE Trans. Antennas Propag. 63, 5456–5464 (2015). - PubMed
  24. Clemente, A., Pigeon, M., Rudant, L. & Delaveaud, C. Design of a super directive four-element compact antenna array using spherical wave expansion. IEEE Trans. Antennas Propag. 63, 4715–4722 (2015). - PubMed
  25. Shamonina, E., Kalinin, V. A., Ringhofer, K. H. & Solymar, L. Magnetoinductive waves in one, two, and three dimensions. J. Appl. Phys. 92, 6252–6261 (2002). - PubMed
  26. Solymar, L. & Shamonina, E. Waves in Metamaterials (Oxford University Press, 2009). - PubMed
  27. Radkovskaya, A. et al. Experimental demonstration of superdirectivity for coupled dimers of meta-atoms. In Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS), 2016 10th International Congress on, 328–330 (IEEE, 2016). - PubMed
  28. Radkovskaya, A. et al. Superdirectivity from arrays of strongly coupled meta-atoms. J. Appl. Phys. 124, 104901, https://doi.org/10.1063/1.5033937 (2018). - PubMed
  29. Vallecchi, A., Li, L., Stevens, C. J. & Shamonina, E. Mapping directivity of coupled dimers of meta-atoms. In 2017 11th International Congress on Engineered Materials Platforms for Novel Wave Phenomena (Metamaterials), 358–360, https://doi.org/10.1109/MetaMaterials.2017.8107812 (2017). - PubMed
  30. Vallecchi, A. et al. 3D printed superdirective dimer of split ring resonators. IEEE Trans. Antennas Propag. (manuscript submitted for publication). - PubMed
  31. Liu, N. & Giessen, H. Coupling effects in optical metamaterials. Angew. Chem. Int. Ed. 49, 9838–9852 (2010). - PubMed
  32. Chen, A., Kodigala, A., Lepetit, T. & Kanté, B. Multipoles of even/odd split-ring resonators. In Photonics, 2, 883–892 (Multidisciplinary Digital Publishing Institute, 2015). - PubMed
  33. Hesmer, F. et al. Coupling mechanisms for split ring resonators: Theory and experiment. Phys. status solidi (b) 244, 1170–1175, https://doi.org/10.1002/pssb.200674501 (2007). - PubMed
  34. Tatartschuk, E., Gneiding, N., Hesmer, F., Radkovskaya, A. & Shamonina, E. Mapping inter-element coupling in metamaterials: Scaling down to infrared. J. Appl. Phys. 111, 094904 (2012). - PubMed
  35. Liu, N., Liu, H., Zhu, S. & Giessen, H. Stereometamaterials. Nat. Photonics 3, 157 (2009). - PubMed
  36. Powell, D. A., Lapine, M., Gorkunov, M. V., Shadrivov, I. V. & Kivshar, Y. S. Metamaterial tuning by manipulation of near-field interaction. Phys. Rev. B 82, 155128 (2010). - PubMed
  37. Sersic, I., Frimmer, M., Verhagen, E. & Koenderink, A. F. Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays. Phys. Rev. Lett. 103, 213902 (2009). - PubMed
  38. Poo, Y., Wu, R.-x, Liu, M. & Wang, L. A circuit model for the hybrid resonance modes of paired srr metamaterials. Opt. Express 22, 1920–1929 (2014). - PubMed
  39. Awai, I. & Zhang, Y. Coupling coefficient of resonators-an intuitive way of its understanding. Electron. Commun. Jpn. (Part. II: Electron.) 90, 11–18 (2007). - PubMed
  40. Elnaggar, S. Y., Tervo, R. J. & Mattar, S. M. Energy coupled mode theory for electromagnetic resonators. IEEE Trans. Microw. Theory Tech. 63, 2115–2123 (2015). - PubMed
  41. Elnaggar, S. Y., Tervo, R. J. & Mattar, S. M. General expressions and physical origin of the coupling coefficient of arbitrary tuned coupled electromagnetic resonators. J. Appl. Phys. 118, 194901 (2015). - PubMed
  42. Balanis, C. A. Antenna Theory: Analysis and Design (Wiley-Interscience, New York, NY, USA, 2016). - PubMed
  43. Allen, J. E. & Segre, S. E. The electric field in single-turn and multi-sector coils. Il Nuovo Cimento (1955-1965) 21, 980–987 (1961). - PubMed
  44. Sydoruk, O., Tatartschuk, E., Shamonina, E. & Solymar, L. Analytical formulation for the resonant frequency of split rings. J. Appl. Phys. 105, 014903 (2009). - PubMed
  45. CST Microwave Studio. User manual version 2016. CST Computer Simulation Technology GmbH, Darmstadt, Germany (2016). - PubMed
  46. Vallecchi, A., Stevens, C. & Shamonina, E. Superdirective meta-arrays at telecommunication wavelengths. In Loughborough Antennas Propagation Conference (LAPC 2017), 1–4, https://doi.org/10.1049/cp.2017.0283 (2017). - PubMed

Publication Types