Display options
Share it on

Adv Sci (Weinh). 2020 Feb 27;7(8):1902802. doi: 10.1002/advs.201902802. eCollection 2020 Apr.

In Vivo Assembly of Nanoparticles Achieved through Synergy of Structure-Based Protein Engineering and Synthetic DNA Generates Enhanced Adaptive Immunity.

Advanced science (Weinheim, Baden-Wurttemberg, Germany)

Ziyang Xu, Megan C Wise, Neethu Chokkalingam, Susanne Walker, Edgar Tello-Ruiz, Sarah T C Elliott, Alfredo Perales-Puchalt, Peng Xiao, Xizhou Zhu, Ruth A Pumroy, Paul D Fisher, Katherine Schultheis, Eric Schade, Sergey Menis, Stacy Guzman, Hanne Andersen, Kate E Broderick, Laurent M Humeau, Kar Muthumani, Vera Moiseenkova-Bell, William R Schief, David B Weiner, Daniel W Kulp

Affiliations

  1. The Vaccine and Immunotherapy Center The Wistar Institute Philadelphia PA 19104 USA.
  2. Department of Pharmacology Perelman School of Medicine University of Pennsylvania Philadelphia PA 19104 USA.
  3. Inovio Pharmaceuticals Plymouth Meeting Philadelphia PA 19422 USA.
  4. Department of Immunology and Microbiology The Scripps Research Institute La Jolla CA 92037 USA.
  5. IAVI Neutralizing Antibody Center The Scripps Research Institute La Jolla CA 92037 USA.
  6. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery The Scripps Research Institute La Jolla CA 92037 USA.
  7. Bioqual Rockville MD 20852 USA.
  8. Ragon Institute of MGH MIT and Harvard Cambridge MA 02139 USA.
  9. Department of Microbiology Perelman School of Medicine University of Pennsylvania Philadelphia PA 19104 USA.

PMID: 32328416 PMCID: PMC7175333 DOI: 10.1002/advs.201902802

Abstract

Nanotechnologies are considered to be of growing importance to the vaccine field. Through decoration of immunogens on multivalent nanoparticles, designed nanovaccines can elicit improved humoral immunity. However, significant practical and monetary challenges in large-scale production of nanovaccines have impeded their widespread clinical translation. Here, an alternative approach is illustrated integrating computational protein modeling and adaptive electroporation-mediated synthetic DNA delivery, thus enabling direct in vivo production of nanovaccines. DNA-launched nanoparticles are demonstrated displaying an HIV immunogen spontaneously self-assembled in vivo. DNA-launched nanovaccines induce stronger humoral responses than their monomeric counterparts in both mice and guinea pigs, and uniquely elicit CD8+ effector T-cell immunity as compared to recombinant protein nanovaccines. Improvements in vaccine responses recapitulate when DNA-launched nanovaccines with alternative scaffolds and decorated antigen are designed and evaluated. Finally, evaluation of functional immune responses induced by DLnanovaccines demonstrates that, in comparison to control mice or mice immunized with DNA-encoded hemagglutinin monomer, mice immunized with a DNA-launched hemagglutinin nanoparticle vaccine fully survive a lethal influenza challenge, and have substantially lower viral load, weight loss, and influenza-induced lung pathology. Additional study of these next-generation in vivo-produced nanovaccines may offer advantages for immunization against multiple disease targets.

© 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

Keywords: DNA vaccines; in vivo self‐assembly; infectious diseases; nanoparticle vaccines; protein engineering

Conflict of interest statement

Z.X., D.B.W., and D.W.K. have a pending patent US.62784318. M.C.W., P.D.F., K.S., E.S., K.E.B., and L.M.H. are employees of Inovio Pharmaceuticals and as such receive salary and benefits including own

References

  1. Nat Biotechnol. 2000 Sep;18(9):974-9 - PubMed
  2. J Clin Invest. 2006 May;116(5):1425-34 - PubMed
  3. N Engl J Med. 2010 Nov 18;363(21):2036-44 - PubMed
  4. Cell. 2019 Mar 7;176(6):1420-1431.e17 - PubMed
  5. Front Cell Infect Microbiol. 2013 Mar 25;3:13 - PubMed
  6. Int J Mol Sci. 2018 Nov 15;19(11): - PubMed
  7. Curr Opin Immunol. 2019 Aug;59:49-56 - PubMed
  8. J Exp Med. 1999 Jan 4;189(1):169-78 - PubMed
  9. Curr Opin Virol. 2016 Feb;16:132-142 - PubMed
  10. Retrovirology. 2015 Sep 26;12:82 - PubMed
  11. Annu Rev Med. 2019 Jan 27;70:91-104 - PubMed
  12. Nanotechnology. 2013 Jul 26;24(29):295102 - PubMed
  13. Nanomedicine (Lond). 2012 Dec;7(12):1877-93 - PubMed
  14. J Infect Dis. 2019 Jul 2;220(3):400-410 - PubMed
  15. ACS Appl Mater Interfaces. 2012 Jan;4(1):235-43 - PubMed
  16. J Immunol. 1998 Jun 15;160(12):5707-18 - PubMed
  17. N Engl J Med. 1980 Oct 9;303(15):833-41 - PubMed
  18. Immunity. 2011 Aug 26;35(2):161-8 - PubMed
  19. Mol Ther. 2019 Jan 2;27(1):188-199 - PubMed
  20. Science. 2016 Mar 25;351(6280):1458-63 - PubMed
  21. Vaccine. 2018 May 24;36(22):3079-3089 - PubMed
  22. Nat Rev Genet. 2008 Oct;9(10):776-88 - PubMed
  23. Science. 2016 Sep 30;353(6307):1557-1560 - PubMed
  24. Curr Opin Immunol. 2011 Jun;23(3):421-9 - PubMed
  25. Front Immunol. 2019 Jan 24;10:22 - PubMed
  26. Methods Mol Biol. 2011;726:325-38 - PubMed
  27. Gynecol Oncol. 2017 Jul;146(1):196-204 - PubMed
  28. Nanotheranostics. 2017 Jun 9;1(3):244-260 - PubMed
  29. Biotechnol Bioeng. 2014 Mar;111(3):425-40 - PubMed
  30. J Infect Dis. 2013 Sep 1;208(5):818-29 - PubMed
  31. J Virol. 2017 Nov 14;91(23): - PubMed
  32. Cell. 2016 Sep 8;166(6):1459-1470.e11 - PubMed
  33. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4156-60 - PubMed
  34. Front Immunol. 2018 Jan 22;9:14 - PubMed
  35. Front Immunol. 2018 Dec 04;9:2780 - PubMed
  36. Vaccine. 2018 Feb 1;36(6):906-914 - PubMed
  37. Vaccine. 2014 Jan 9;32(3):327-37 - PubMed
  38. Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):12283-7 - PubMed
  39. J Exp Med. 2004 May 17;199(10):1391-9 - PubMed
  40. AAPS J. 2012 Jun;14(2):282-95 - PubMed
  41. Mol Ther. 2018 Feb 7;26(2):435-445 - PubMed
  42. PLoS One. 2015 Apr 01;10(4):e0122659 - PubMed
  43. Open Forum Infect Dis. 2015 May 14;2(2):ofv067 - PubMed
  44. J Comput Chem. 2017 Feb 15;38(5):276-287 - PubMed
  45. Nat Commun. 2016 Jun 07;7:11826 - PubMed
  46. Nat Biotechnol. 2001 Jun;19(6):543-7 - PubMed
  47. J Comput Chem. 2012 Jul 30;33(20):1645-61 - PubMed
  48. J Virol. 2001 May;75(9):4040-7 - PubMed
  49. EBioMedicine. 2018 Sep;35:97-105 - PubMed
  50. Nat Immunol. 2019 Mar;20(3):362-372 - PubMed
  51. Science. 2019 Feb 8;363(6427):649-654 - PubMed
  52. N Biotechnol. 2017 Oct 25;39(Pt B):174-180 - PubMed
  53. Nat Immunol. 2019 May;20(5):613-625 - PubMed
  54. Science. 2016 Sep 9;353(6304):1129-32 - PubMed
  55. Protein Expr Purif. 2011 Dec;80(2):203-10 - PubMed
  56. Lancet Infect Dis. 2019 Sep;19(9):1013-1022 - PubMed
  57. Front Microbiol. 2014 Jun 06;5:272 - PubMed
  58. Science. 2015 Jul 10;349(6244):156-61 - PubMed
  59. Oncoimmunology. 2018 Feb 22;7(6):e1433516 - PubMed
  60. Sci Rep. 2016 Jun 30;6:29131 - PubMed
  61. Nature. 2013 Jul 4;499(7456):102-6 - PubMed
  62. Lancet. 2015 Nov 21;386(10008):2078-2088 - PubMed
  63. J Transl Med. 2019 Jun 14;17(1):200 - PubMed
  64. Science. 2016 Oct 14;354(6309):237-240 - PubMed
  65. Expert Rev Vaccines. 2008 Mar;7(2):175-91 - PubMed

Publication Types

Grant support