Display options
Share it on

Alcohol Clin Exp Res. 2020 Jun;44(6):1224-1233. doi: 10.1111/acer.14342. Epub 2020 May 14.

Alcohol Cue-Induced Ventral Striatum Activity Predicts Subsequent Alcohol Self-Administration.

Alcoholism, clinical and experimental research

Aaron C Lim, ReJoyce Green, Erica N Grodin, Alexandra Venegas, Lindsay R Meredith, Suzanna Donato, Elizabeth Burnette, Lara A Ray

Affiliations

  1. From the, Department of Psychology, (ACL, RG, ENG, AV, LRM, SD, EB, LAR), University of California, Los Angeles, Los Angeles, California, United States.
  2. Department of Psychiatry and Biobehavioral Sciences, (LAR), University of California, Los Angeles, Los Angeles, California, USA.

PMID: 32406553 PMCID: PMC7336863 DOI: 10.1111/acer.14342

Abstract

BACKGROUND: Human laboratory paradigms are a pillar in medication development for alcohol use disorders (AUD). Neuroimaging paradigms, in which individuals are exposed to cues that elicit neural correlates of alcohol craving (e.g., mesocorticolimbic activation), are increasingly utilized to test the effects of AUD medications. Elucidation of the translational effects of these neuroimaging paradigms on human laboratory paradigms, such as self-administration, is warranted. The current study is a secondary analysis examining whether alcohol cue-induced activation in the ventral striatum is predictive of subsequent alcohol self-administration in the laboratory.

METHODS: Non-treatment-seeking heavy drinkers of East Asian descent (n = 41) completed a randomized, placebo-controlled, double-blind, crossover experiment on the effects of naltrexone on neuroimaging and human laboratory paradigms. Participants completed 5 days of study medication (or placebo); on day 4, they completed a neuroimaging alcohol taste cue-reactivity task. On the following day (day 5), participants completed a 60-minute alcohol self-administration paradigm.

RESULTS: Multilevel Cox regressions indicated a significant effect of taste cue-elicited ventral striatum activation on latency to first drink, Wald χ

CONCLUSIONS: Neuroimaging alcohol taste cue paradigms may be predictive of laboratory paradigms such as self-administration. Elucidation of the relationships among different paradigms will inform how these paradigms may be used synergistically in experimental medicine and medication development.

© 2020 by the Research Society on Alcoholism.

Keywords: Alcohol Self-administration; Cue-Induced Craving; Human Laboratory; Neuroimaging; Ventral Striatum

References

  1. Mol Psychiatry. 2016 Mar;21(3):348-56 - PubMed
  2. Alcohol Clin Exp Res. 2014 Nov;38(11):2754-62 - PubMed
  3. Methods Mol Biol. 2019;2011:195-219 - PubMed
  4. BMC Med Genet. 2017 Oct 26;18(1):120 - PubMed
  5. Addict Biol. 2020 Jan;25(1):e12717 - PubMed
  6. Drug Alcohol Depend. 2012 Jun 1;123(1-3):1-6 - PubMed
  7. Alcohol Clin Exp Res. 2008 Jul;32(7):1113-23 - PubMed
  8. Arch Gen Psychiatry. 2012 Aug;69(8):842-52 - PubMed
  9. Front Psychiatry. 2019 Sep 05;10:624 - PubMed
  10. Alcohol Clin Exp Res. 2016 Jan;40(1):206-13 - PubMed
  11. Curr Top Behav Neurosci. 2013;13:315-53 - PubMed
  12. Alcohol Clin Exp Res. 2019 Oct;43(10):2038-2056 - PubMed
  13. Sci Rep. 2017 May 23;7(1):2287 - PubMed
  14. J Psychopharmacol. 2018 Jan;32(1):105-115 - PubMed
  15. Am J Addict. 2017 Aug;26(5):516-525 - PubMed
  16. Addict Biol. 2009 Jan;14(1):108-18 - PubMed
  17. Biol Psychiatry. 2009 Jul 15;66(2):185-90 - PubMed
  18. Neuropsychopharmacology. 2018 Aug;43(9):1891-1899 - PubMed
  19. Alcohol Clin Exp Res. 2015 Aug;39(8):1312-27 - PubMed
  20. Alcohol Clin Exp Res. 2018 Mar;42(3):613-623 - PubMed
  21. Addict Biol. 2013 Jan;18(1):121-33 - PubMed
  22. Behav Genet. 2016 Mar;46(2):151-69 - PubMed
  23. Psychol Addict Behav. 2013 Jun;27(2):336-50 - PubMed
  24. Psychopharmacol Bull. 1986;22(2):343-81 - PubMed
  25. Addict Biol. 2017 Nov;22(6):1515-1527 - PubMed
  26. Drug Alcohol Depend. 2019 Jul 1;200:181-190 - PubMed
  27. Nat Commun. 2017 Dec 19;8(1):1983 - PubMed
  28. Addict Biol. 2020 May;25(3):e12766 - PubMed
  29. Psychopharmacology (Berl). 2006 Dec;189(2):201-10 - PubMed
  30. J Neurosci Methods. 2015 Mar 15;242:58-64 - PubMed
  31. Neuropsychopharmacology. 2018 Jun;43(7):1530-1538 - PubMed
  32. Neuropsychopharmacology. 2011 Sep;36(10):2086-96 - PubMed
  33. Front Psychiatry. 2017 Sep 25;8:182 - PubMed
  34. Sci Adv. 2019 Sep 25;5(9):eaax4043 - PubMed
  35. Neuropsychopharmacology. 2008 May;33(6):1391-401 - PubMed
  36. Alcohol Clin Exp Res. 2018 Sep;42(9):1612-1622 - PubMed
  37. Br J Addict. 1989 Nov;84(11):1353-7 - PubMed
  38. Addict Biol. 2017 May;22(3):581-615 - PubMed
  39. Neuropsychopharmacology. 2018 Dec;43(13):2532-2538 - PubMed
  40. Handb Clin Neurol. 2014;125:355-68 - PubMed
  41. Alcohol Clin Exp Res. 2019 May;43(5):907-915 - PubMed
  42. Alcohol Clin Exp Res. 2014 Jan;38(1):78-89 - PubMed
  43. Annu Rev Psychol. 2011;62:583-619 - PubMed
  44. Alcohol Clin Exp Res. 2016 Sep;40(9):1865-73 - PubMed
  45. J Abnorm Psychol. 2015 Nov;124(4):1050-63 - PubMed
  46. Neuropsychopharmacology. 2018 Aug;43(9):1884-1890 - PubMed
  47. Alcohol Clin Exp Res. 1997 Jun;21(4):613-9 - PubMed
  48. Neuropsychopharmacology. 2017 Dec;42(13):2640-2653 - PubMed
  49. Am J Psychiatry. 2017 Nov 1;174(11):1094-1101 - PubMed
  50. Behav Res Ther. 2018 Feb;101:3-11 - PubMed
  51. Addiction. 2014 Apr;109(4):585-95 - PubMed

Publication Types

Grant support