Display options
Share it on

PLoS Comput Biol. 2020 Jun 29;16(6):e1007982. doi: 10.1371/journal.pcbi.1007982. eCollection 2020 Jun.

It's about time: Analysing simplifying assumptions for modelling multi-step pathways in systems biology.

PLoS computational biology

Niklas Korsbo, Henrik Jönsson

Affiliations

  1. The Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom.
  2. Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom.
  3. Department of Astronomy and Theoretical Physics, Computational Biology and Biological Physics, Lund University, Lund, Sweden.

PMID: 32598362 PMCID: PMC7351226 DOI: 10.1371/journal.pcbi.1007982

Abstract

Thoughtful use of simplifying assumptions is crucial to make systems biology models tractable while still representative of the underlying biology. A useful simplification can elucidate the core dynamics of a system. A poorly chosen assumption can, however, either render a model too complicated for making conclusions or it can prevent an otherwise accurate model from describing experimentally observed dynamics. Here, we perform a computational investigation of sequential multi-step pathway models that contain fewer pathway steps than the system they are designed to emulate. We demonstrate when such models will fail to reproduce data and how detrimental truncation of a pathway leads to detectable signatures in model dynamics and its optimised parameters. An alternative assumption is suggested for simplifying such pathways. Rather than assuming a truncated number of pathway steps, we propose to use the assumption that the rates of information propagation along the pathway is homogeneous and, instead, letting the length of the pathway be a free parameter. We first focus on linear pathways that are sequential and have first-order kinetics, and we show how this assumption results in a three-parameter model that consistently outperforms its truncated rival and a delay differential equation alternative in recapitulating observed dynamics. We then show how the proposed assumption allows for similarly terse and effective models of non-linear pathways. Our results provide a foundation for well-informed decision making during model simplifications.

Conflict of interest statement

The authors have declared that no competing interests exist.

References

  1. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7247-51 - PubMed
  2. Biophys J. 2014 Nov 4;107(9):2006-15 - PubMed
  3. Bioinformatics. 2010 Jul 15;26(14):1797-9 - PubMed
  4. Sci Adv. 2016 Jan 29;2(1):e1500989 - PubMed
  5. Sci Signal. 2010 Dec 21;3(153):ra90 - PubMed
  6. J Theor Biol. 1996 Dec 21;183(4):429-46 - PubMed
  7. Syst Biol (Stevenage). 2006 Jul;153(4):187-91 - PubMed
  8. Nat Rev Immunol. 2016 Sep;16(9):537-52 - PubMed
  9. Cell Host Microbe. 2014 Nov 12;16(5):605-15 - PubMed
  10. J Biol Chem. 2009 Aug 28;284(35):23734-42 - PubMed
  11. J Theor Biol. 2008 Oct 21;254(4):784-98 - PubMed
  12. Nature. 1997 Jun 26;387(6636):913-7 - PubMed
  13. Biophys J. 2006 Dec 15;91(12):4368-80 - PubMed
  14. BMC Biol. 2014 Apr 30;12:29 - PubMed
  15. J R Soc Interface. 2016 Aug;13(121): - PubMed
  16. Oncogene. 2005 Aug 25;24(36):5533-42 - PubMed
  17. Endocr Rev. 2001 Apr;22(2):153-83 - PubMed
  18. PLoS Comput Biol. 2006 Jan;2(1):e3 - PubMed
  19. Nat Commun. 2019 Jan 8;10(1):68 - PubMed
  20. Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16529-34 - PubMed
  21. Gut. 2003 Jan;52(1):144-51 - PubMed
  22. Philos Trans A Math Phys Eng Sci. 2013 Aug 19;371(1999):20120466 - PubMed
  23. Nature. 2000 Jan 20;403(6767):335-8 - PubMed
  24. Mol Syst Biol. 2011 Feb 1;7:467 - PubMed
  25. Math Biosci. 1998 Sep;152(2):143-63 - PubMed
  26. Front Genet. 2012 Jul 19;3:131 - PubMed
  27. Mol Syst Biol. 2008;4:164 - PubMed
  28. FEBS J. 2009 Jun;276(12):3177-98 - PubMed
  29. Nat Rev Mol Cell Biol. 2008 Dec;9(12):981-91 - PubMed
  30. BMC Syst Biol. 2017 Apr 13;11(1):48 - PubMed
  31. PLoS One. 2018 Mar 26;13(3):e0194769 - PubMed
  32. PLoS One. 2014 Feb 11;9(2):e88419 - PubMed
  33. Sci Rep. 2013;3:2473 - PubMed
  34. Annu Rev Phytopathol. 2015;53:379-402 - PubMed
  35. BMC Syst Biol. 2010 Jun 24;4:88 - PubMed
  36. Nature. 2000 Jan 20;403(6767):339-42 - PubMed
  37. Nat Commun. 2018 Dec 5;9(1):5194 - PubMed
  38. J Theor Biol. 2019 Feb 21;463:155-166 - PubMed
  39. FEBS J. 2007 Feb;274(4):1046-61 - PubMed
  40. Mol Cell. 2002 May;9(5):957-70 - PubMed
  41. Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Oct;80(4 Pt 2):046205 - PubMed
  42. Curr Opin Syst Biol. 2017 Feb;1:16-24 - PubMed
  43. J Pharmacokinet Pharmacodyn. 2007 Oct;34(5):711-26 - PubMed
  44. Nat Cell Biol. 2006 Nov;8(11):1195-203 - PubMed
  45. BMC Syst Biol. 2015 Oct 29;9:74 - PubMed

MeSH terms

Publication Types