Display options
Share it on

Autophagy. 2021 Nov;17(11):3361-3374. doi: 10.1080/15548627.2021.1872241. Epub 2021 Jan 15.

Tumor heterogeneity in autophagy-dependent ferroptosis.

Autophagy

Jingbo Li, Jiao Liu, Yinghua Xu, Runliu Wu, Xin Chen, Xinxin Song, Herbert Zeh, Rui Kang, Daniel J Klionsky, Xiaoyan Wang, Daolin Tang

Affiliations

  1. Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA.
  2. Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
  3. The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.
  4. Life Sciences Institute and Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.

PMID: 33404288 PMCID: PMC8632302 DOI: 10.1080/15548627.2021.1872241

Abstract

Macroautophagy (hereafter referred to as "autophagy") is a lysosome-mediated degradation process that plays a complex role in cellular stress, either promoting survival or triggering death. Early studies suggest that ferroptosis, an iron-dependent form of regulated cell death, is not related to autophagy. Conversely, recent evidence indicates that the molecular machinery of autophagy facilitates ferroptosis through the selective degradation of anti-ferroptosis regulators. However, the mechanism of autophagy-dependent ferroptosis remains incompletely understood. Here, we examine the early dynamic change in protein expression of autophagic (e.g., MAP1LC3B and SQSTM1) or ferroptotic (e.g., SLC7A11 and GPX4) regulators in 60 human cancer cell lines in response to two classical ferroptosis activators (erastin and RSL3) in the absence or presence of the lysosomal inhibitor chloroquine. Compared to erastin, RSL3 exhibits wider and stronger activity in the upregulation of MAP1LC3B-II or downregulation of SQSTM1 in 80% (48/60) or 63% (38/60) of cell lines, respectively. Both RSL3 and erastin failed to affect SLC7A11 expression, but they led to GPX4 downregulation in 12% (7/60) and 3% (2/60) of cell lines, respectively. Additionally, the intracellular iron exporter SLC40A1/ferroportin-1 was identified as a new substrate for autophagic elimination, and its degradation by SQSTM1 promoted ferroptosis

Keywords: Autophagy; cell death; ferroptosis; heterogeneity; tumor therapy

References

  1. Front Cell Dev Biol. 2020 Jun 03;8:431 - PubMed
  2. Cancer Gene Ther. 2021 Feb;28(1-2):55-63 - PubMed
  3. Nat Rev Mol Cell Biol. 2018 Jun;19(6):349-364 - PubMed
  4. Autophagy. 2021 Sep;17(9):2054-2081 - PubMed
  5. Nat Cell Biol. 2018 Mar;20(3):233-242 - PubMed
  6. Cell. 2014 Jan 16;156(1-2):317-331 - PubMed
  7. Biochem Biophys Res Commun. 2019 Jan 22;508(4):997-1003 - PubMed
  8. Sci Adv. 2019 Jul 24;5(7):eaaw2238 - PubMed
  9. Toxicol Pathol. 2010 Jan;38(1):96-109 - PubMed
  10. Cell. 2019 Jan 10;176(1-2):11-42 - PubMed
  11. Mol Cell Oncol. 2015 May 26;2(4):e1054549 - PubMed
  12. Apoptosis. 2007 May;12(5):913-22 - PubMed
  13. Nat Commun. 2020 Dec 11;11(1):6339 - PubMed
  14. Mol Cell. 2010 Oct 22;40(2):280-93 - PubMed
  15. Autophagy. 2020 Aug;16(8):1482-1505 - PubMed
  16. Cell Res. 2016 Sep;26(9):1021-32 - PubMed
  17. Autophagy. 2021 Nov;17(11):3275-3296 - PubMed
  18. Autophagy. 2015;11(1):28-45 - PubMed
  19. Front Cell Dev Biol. 2020 Sep 17;8:586578 - PubMed
  20. Science. 2000 Dec 1;290(5497):1717-21 - PubMed
  21. Cell Res. 2019 May;29(5):347-364 - PubMed
  22. Autophagy. 2019 Nov;15(11):2033-2035 - PubMed
  23. Proc Natl Acad Sci U S A. 2019 Feb 19;116(8):2996-3005 - PubMed
  24. Autophagy. 2018;14(12):2083-2103 - PubMed
  25. Autophagy. 2016;12(1):1-222 - PubMed
  26. Autophagy. 2018;14(12):2173-2175 - PubMed
  27. Cell Res. 2021 Feb;31(2):107-125 - PubMed
  28. Front Cell Dev Biol. 2020 Oct 07;8:590226 - PubMed
  29. Cancer Res. 2017 Apr 15;77(8):2064-2077 - PubMed
  30. Cell Rep. 2018 Jul 10;24(2):366-378 - PubMed
  31. Biochem Biophys Res Commun. 2019 Mar 5;510(2):278-283 - PubMed
  32. Cell Chem Biol. 2019 May 16;26(5):623-633.e9 - PubMed
  33. Biochem Biophys Res Commun. 2013 Jun 28;436(2):212-6 - PubMed
  34. Ann N Y Acad Sci. 2016 Mar;1368(1):149-61 - PubMed
  35. Cell Death Differ. 2016 Mar;23(3):369-79 - PubMed
  36. Nat Rev Clin Oncol. 2018 Feb;15(2):81-94 - PubMed
  37. J Cell Sci. 2018 Sep 20;131(18): - PubMed
  38. Nat Rev Clin Oncol. 2021 May;18(5):280-296 - PubMed
  39. J Biol Chem. 2007 Aug 17;282(33):24131-45 - PubMed
  40. Curr Biol. 2020 Nov 2;30(21):R1292-R1297 - PubMed
  41. Nat Rev Cancer. 2017 Sep;17(9):528-542 - PubMed
  42. Autophagy. 2007 Nov-Dec;3(6):542-5 - PubMed
  43. Biochem Biophys Res Commun. 2019 Aug 13;516(1):37-43 - PubMed
  44. J Biol Chem. 2009 Nov 6;284(45):30836-44 - PubMed
  45. Curr Pathobiol Rep. 2017 Jun;5(2):153-159 - PubMed
  46. Cell. 2017 Oct 5;171(2):273-285 - PubMed
  47. Cell Death Dis. 2019 Oct 28;10(11):822 - PubMed
  48. Cell Metab. 2012 Jun 6;15(6):918-24 - PubMed
  49. Cell Death Differ. 2019 Mar;26(4):605-616 - PubMed
  50. J Cell Biol. 2010 Sep 6;190(5):881-92 - PubMed
  51. Cell Rep. 2017 Aug 15;20(7):1692-1704 - PubMed
  52. Curr Biol. 2018 Aug 6;28(15):2388-2399.e5 - PubMed
  53. Nat Chem Biol. 2016 Jul;12(7):497-503 - PubMed
  54. Autophagy. 2020 Nov;16(11):2069-2083 - PubMed
  55. Nature. 2015 Apr 2;520(7545):57-62 - PubMed
  56. Cell Chem Biol. 2020 Apr 16;27(4):420-435 - PubMed
  57. Biochim Biophys Acta. 2012 Sep;1823(9):1426-33 - PubMed
  58. Cell Mol Life Sci. 2017 Oct;74(19):3631-3645 - PubMed
  59. EMBO J. 2000 Nov 1;19(21):5720-8 - PubMed
  60. Cell Death Differ. 2018 Mar;25(3):486-541 - PubMed
  61. J Cell Physiol. 2020 Nov;235(11):8839-8851 - PubMed
  62. Cell Death Differ. 2015 Mar;22(3):377-88 - PubMed
  63. Annu Rev Pathol. 2013 Jan 24;8:105-37 - PubMed
  64. Redox Biol. 2013 Jan 26;1:56-64 - PubMed
  65. Autophagy. 2016 Aug 2;12(8):1425-8 - PubMed
  66. Cell Death Differ. 2008 Jan;15(1):171-82 - PubMed
  67. Autophagy. 2021 Apr;17(4):948-960 - PubMed
  68. Semin Cancer Biol. 2020 Nov;66:89-100 - PubMed
  69. Cell. 2012 May 25;149(5):1060-72 - PubMed

Publication Types

Grant support