Display options
Share it on

Mitochondrion. 2021 May;58:303-310. doi: 10.1016/j.mito.2021.01.006. Epub 2021 Jan 26.

Comparison of whole genome sequencing and targeted sequencing for mitochondrial DNA.

Mitochondrion

Ruoying Chen, Micheala A Aldred, Weiling Xu, Joe Zein, Peter Bazeley, Suzy A A Comhair, Deborah A Meyers, Eugene R Bleecker, Chunyu Liu, Serpil C Erzurum, Bo Hu,

Affiliations

  1. Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
  2. Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, IN, USA.
  3. Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
  4. Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA.
  5. Department of Medicine, University of Arizona, Tucson, AZ, USA.
  6. Department of Biostatistics, Boston University, Boston, MA, USA.
  7. Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA. Electronic address: [email protected].
  8. Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA. Electronic address: [email protected].

PMID: 33513442 PMCID: PMC8354572 DOI: 10.1016/j.mito.2021.01.006

Abstract

Mitochondrial dysfunction has emerged to be associated with a broad spectrum of diseases, and there is an increasing demand for accurate detection of mitochondrial DNA (mtDNA) variants. Whole genome sequencing (WGS) has been the dominant sequencing approach to identify genetic variants in recent decades, but most studies focus on variants on the nuclear genome. Whole genome sequencing is also costly and time consuming. Sequencing specifically targeted for mtDNA is commonly used in the diagnostic settings and has lower costs. However, there is a lack of pairwise comparisons between these two sequencing approaches for calling mtDNA variants on a population basis. In this study, we compared WGS and mtDNA-targeted sequencing (targeted-seq) in analyzing mitochondrial DNA from 1499 participants recruited into the Severe Asthma Research Program (SARP). Our study reveals that targeted-sequencing and WGS have comparable capacity to determine genotypes and to call haplogroups and homoplasmies on mtDNA. However, there exists a large variability in calling heteroplasmies, especially for low-frequency heteroplasmies, which indicates that investigators should be cautious about heteroplasmies acquired from different sequencing methods. Further research is highly desired to improve variant detection methods for mitochondrial DNA.

Copyright © 2021 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

Keywords: Asthma; Mitochondrial DNA; Targeted sequencing; Whole genome sequencing

References

  1. Am J Hum Genet. 2010 Aug 13;87(2):237-49 - PubMed
  2. Annu Rev Genet. 2005;39:359-407 - PubMed
  3. J Endocrinol Invest. 2019 Aug;42(8):931-940 - PubMed
  4. Gene. 2019 May 30;699:145-154 - PubMed
  5. Nature. 2016 Dec 8;540(7632):270-275 - PubMed
  6. J Allergy Clin Immunol Pract. 2018 Mar - Apr;6(2):545-554.e4 - PubMed
  7. Nat Rev Genet. 2005 May;6(5):389-402 - PubMed
  8. Genet Med. 2014 Dec;16(12):962-71 - PubMed
  9. Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5521-6 - PubMed
  10. Forensic Sci Int Genet. 2015 Sep;18:131-9 - PubMed
  11. Bioinformatics. 2009 Jul 15;25(14):1754-60 - PubMed
  12. J Allergy Clin Immunol. 2007 Feb;119(2):405-13 - PubMed
  13. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8739-46 - PubMed
  14. Hum Mol Genet. 2013 Jan 15;22(2):384-90 - PubMed
  15. Nucleic Acids Res. 2016 Jun 20;44(11):5313-29 - PubMed
  16. Mitochondrion. 2019 May;46:302-306 - PubMed
  17. Cell Stem Cell. 2016 May 5;18(5):625-36 - PubMed
  18. Biotechniques. 2010 Apr;48(4):287-96 - PubMed
  19. PLoS Genet. 2015 Jul 14;11(7):e1005306 - PubMed
  20. Nature. 1981 Apr 9;290(5806):457-65 - PubMed
  21. Nat Commun. 2016 Nov 22;7:13548 - PubMed
  22. J Clin Invest. 2016 Jul 1;126(7):2465-81 - PubMed
  23. JAMA. 2014 Jul 2;312(1):68-77 - PubMed
  24. PLoS One. 2013 Oct 02;8(10):e74636 - PubMed
  25. Proc Natl Acad Sci U S A. 2020 Jan 28;117(4):2187-2193 - PubMed
  26. Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):10654-9 - PubMed
  27. Am J Hum Genet. 2001 Mar;68(3):802-6 - PubMed
  28. Ann Neurol. 2015 May;77(5):753-9 - PubMed
  29. Bioinformatics. 2014 Nov 1;30(21):3115-7 - PubMed
  30. Nucleic Acids Res. 2016 Jul 8;44(W1):W58-63 - PubMed
  31. Hum Genet. 2018 Mar;137(3):203-213 - PubMed
  32. J Genet Genomics. 2009 Mar;36(3):125-31 - PubMed
  33. Molecules. 2018 Feb 03;23(2): - PubMed
  34. Nucleic Acids Res. 2016 Jul 8;44(W1):W64-9 - PubMed
  35. Curr Protoc Hum Genet. 2011 Oct;Chapter 19:Unit19.8 - PubMed
  36. Sci Rep. 2018 Oct 18;8(1):15347 - PubMed
  37. Am J Respir Crit Care Med. 2012 Feb 15;185(4):356-62 - PubMed
  38. Biochim Biophys Acta. 2010 Feb;1797(2):113-28 - PubMed
  39. NAR Genom Bioinform. 2019 Oct 24;2(1):lqz011 - PubMed

Publication Types

Grant support