Display options
Share it on

Alzheimers Dement. 2021 Apr 15; doi: 10.1002/alz.12344. Epub 2021 Apr 15.

Molecular imaging of NAD.

Alzheimer's & dementia : the journal of the Alzheimer's Association

Yulong Xu, Zude Chen, Hsiao-Ying Wey, Yingxia Liang, Rudolph E Tanzi, Can Zhang, Changning Wang

Affiliations

  1. Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
  2. Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.

PMID: 33860595 DOI: 10.1002/alz.12344

Abstract

INTRODUCTION: Aging is an inevitable physiological process and the biggest risk factor of Alzheimer's disease (AD). Developing an imaging tracer to visualize aging-related changes in the brain may provide a useful biomarker in elucidating neuroanatomical mechanisms of AD.

METHODS: We developed and characterized a new tracer that can be used to visualize SIRT1 in brains related to aging and AD by positron emission tomography imaging.

RESULTS: The SIRT1 tracer displayed desirable brain uptake and selectivity, as well as stable metabolism and proper kinetics and distribution in rodent and nonhuman primate brains. This new tracer was further validated by visualizing SIRT1 in brains of AD transgenic mice, compared to nontransgenic animals.

DISCUSSION: Our SIRT1 tracer not only enables, for the first time, the demonstration of SIRT1 in animal brains, but also allows visualization and recapitulation of AD-related SIRT1 neuropathological changes in animal brains.

© 2021 the Alzheimer's Association.

Keywords: Alzheimer's disease; SIRT1; molecular imaging; positron emission tomography; preclinical animal models

References

  1. Chen B, Zang W, Wang J, et al. The chemical biology of sirtuins. Chem Soc Rev. 2015;44(15):5246-5264. - PubMed
  2. Choudhary C, Weinert BT, Nishida Y, Verdin E, Mann M. The growing landscape of lysine acetylation links metabolism and cell signaling. Nat Rev Mol Cell Biol. 2014;15(8):536-550. - PubMed
  3. Folmer F, Orlikova B, Schnekenburger M, Dicato M, Diederich M. Naturally occurring regulators of histone acetylation/deacetylation. Curr Nutr Food Sci. 2010;6(1):78-99. - PubMed
  4. Seidel C, Schnekenburger M, Dicato M, Diederich M. Histone deacetylase modulators provided by mother nature. Genes Nutr. 2012;7(3):357-367. - PubMed
  5. Choi JE, Mostoslavsky R. Sirtuins, metabolism, and DNA repair. Curr Opin Genet Dev. 2014;26:24-32. - PubMed
  6. Sebastián C, Mostoslavsky R. The role of mammalian sirtuins in cancer metabolism. Semin Cell Dev Biol. 2015;43:33-42. - PubMed
  7. Bheda P, Jing H, Wolberger C, Lin H. The substrate specificity of sirtuins. Annu Rev Biochem. 2016;85:405-429. - PubMed
  8. Hu J, Jing H, Lin H. Sirtuin inhibitors as anticancer agents. Future Med Chem. 2014;6(8):945-966. - PubMed
  9. Imai S, Guarente L. Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases. Trends Pharmacol Sci. 2010;31(5):212-220. - PubMed
  10. Min SW, Sohn PD, Cho SH, Swanson RA, Gan L. Sirtuins in neurodegenerative diseases: an update on potential mechanisms. Front Aging Neurosci. 2013;5:53. - PubMed
  11. Pulla VK, Battu MB, Alvala M, Sriram D, Yogeeswari P. Can targeting SIRT-1 to treat type 2 diabetes be a good strategy? A review. Expert Opin Ther Targets. 2012;16(8):819-832. - PubMed
  12. Marcotte PA, Richardson PL, Guo J, et al. Fluorescence assay of SIRT protein deacetylases using an acetylated peptide substrate and a secondary trypsin reaction. Anal Biochem. 2004;332(1):90-99. - PubMed
  13. Pacholec M, Bleasdale JE, Chrunyk B, et al. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem. 2010;285(11):8340-8351. - PubMed
  14. Dai H, Kustigian L, Carney D, et al. SIRT1 activation by small molecules-kinetic and biophysical evidence for direct interaction of enzyme and activator. J Biol Chem. 2010;285(43):32695-32703. - PubMed
  15. Liu T, Liu PY, Marshall GM. The critical role of the class III histone deacetylase SIRT1 in cancer. Cancer Res. 2009;69(5):1702-1705. - PubMed
  16. Knight JR, Milner J. SIRT1, metabolism and cancer. Curr Opin Oncol. 2012;24(1):68-75. - PubMed
  17. Wang Y, He J, Liao M, et al. An overview of Sirtuins as potential therapeutic target: structure, function and modulators. Eur J Med Chem. 2019;161:48-77. - PubMed
  18. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194-1217. - PubMed
  19. Qin W, Yang T, Ho L, et al. Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem. 2006;281(31):21745-21754. - PubMed
  20. Araki T, Sasaki Y, Milbrandt J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science. 2004;305(5686):1010-1013. - PubMed
  21. Das A, Huang GX, Bonkowski MS, et al. Impairment of an endothelial NAD(+)-H2S signaling network is a reversible cause of vascular aging. Cell. 2018;173(1):74-89. - PubMed
  22. Hou Y, Lautrup S, Cordonnier S, et al. NAD(+) supplementation normalizes key Alzheimer's features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proc Natl Acad Sci USA. 2018;115(8):1876-1885. - PubMed
  23. Chen AC, Martin AJ, Choy B, et al. A phase 3 randomized trial of nicotinamide for skin-cancer chemoprevention. N Engl J Med. 2015;373(17):1618-1626. - PubMed
  24. Zhang L, Butler CR, Maresca KP, et al. Identification and development of an irreversible monoacylglycerol lipase (MAGL) positron emission tomography (PET) radioligand with high specificity. J Med Chem. 2019;62(18):8532-8543. - PubMed
  25. Bonomi R, Popov V, Laws MT, et al. Molecular imaging of sirtuin1 expression-activity in rat brain using positron-emission tomography-magnetic-resonance imaging with [18F]-2-fluorobenzoylaminohexanoicanilide. J Med Chem. 2018;61(16):7116-7130. - PubMed
  26. Arrowsmith CH, Bountra C, Fish PV, Lee K, Schapira M. Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov. 2012;11(5):384-400. - PubMed
  27. Napper AD, Hixon J, McDonagh T, et al. Discovery of indoles as potent and selective inhibitors of the deacetylase SIRT1. J Med Chem. 2005;48(25):8045-8054. - PubMed
  28. Carafa V, Rotili D, Forgione M, et al. Sirtuin functions and modulation: from chemistry to the clinic. Clin Epigenetics. 2016;8:61. - PubMed
  29. Placzek MS, Schroeder FA, Che T, et al. Discrepancies in kappa opioid agonist binding revealed through PET imaging. ACS Chem Neurosci. 2019;10(1):384-395. - PubMed
  30. Fabio RD, Giovannini R, Bertani B, et al. Synthesis and SAR of substituted tetrahydrocarbazole derivatives as new NPY-1 antagonists. Bioorg Med Chem Lett. 2006;16(6):1749-1752. - PubMed
  31. Li X, Vince R. Conformationally restrained carbazolone-containing α,γ-diketo acids as inhibitors of HIV integrase. Bioorg Med Chem. 2006;14(9):2942-2955. - PubMed
  32. Billingsley KL, Barder TE, Buchwald SL. Palladium-catalyzed borylation of aryl chlorides: scope, applications, and computational studies. Angew Chem Int Ed. 2007;46(28):5359-5363. - PubMed
  33. Zeng F, Nye JA, Voll RJ, Howell L, Goodman MM. Synthesis and evaluation of pyridyloxypyridyl indole carboxamides as potential PET imaging agents for 5-HT2C receptors. ACS Med Chem Lett. 2018;9(3):188-192. - PubMed
  34. Lutz MI, Milenkovic I, Regelsberger G, Kovacs GG. Distinct patterns of sirtuin expression during progression of Alzheimer's disease. NeuroMol Med. 2014;16(2):405-414. - PubMed
  35. Julien C, Tremblay C, Émond V, et al. SIRT1 decrease parallels the accumulation of tau in Alzheimer disease. J Neuropathol Exp Neurol. 2009;68(1):48-58. - PubMed
  36. Zhang Q, Liu W, Lu G. miR-200a-3p promotes β-amyloid-induced neuronal apoptosis through down-regulation of SIRT1 in Alzheimer's disease. J Biosci. 2017;42(3):397-404. - PubMed

Publication Types

Grant support