Display options
Share it on

NPJ Breast Cancer. 2021 May 12;7(1):52. doi: 10.1038/s41523-021-00255-3.

Evaluation of the association of heterozygous germline variants in NTHL1 with breast cancer predisposition: an international multi-center study of 47,180 subjects.

NPJ breast cancer

Na Li, Magnus Zethoven, Simone McInerny, Lisa Devereux, Yu-Kuan Huang, Niko Thio, Dane Cheasley, Sara Gutiérrez-Enríquez, Alejandro Moles-Fernández, Orland Diez, Tu Nguyen-Dumont, Melissa C Southey, John L Hopper, Jacques Simard, Martine Dumont, Penny Soucy, Alfons Meindl, Rita Schmutzler, Marjanka K Schmidt, Muriel A Adank, Irene L Andrulis, Eric Hahnen, Christoph Engel, Fabienne Lesueur, Elodie Girard, Susan L Neuhausen, Elad Ziv, Jamie Allen, Douglas F Easton, Rodney J Scott, Kylie L Gorringe, Paul A James, Ian G Campbell

Affiliations

  1. Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia.
  2. Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Vic, Australia.
  3. Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Vic, Australia.
  4. Bioinformatics Core Facility, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia.
  5. Lifepool, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia.
  6. Upper Gastrointestinal Translational Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia.
  7. Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Vic, Australia.
  8. Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO); Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.
  9. Area of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.
  10. Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia.
  11. Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia.
  12. Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia.
  13. Genomics Center, Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Quebec, Canada.
  14. University of Munich, Campus Großhadern, Department of Gynecology and Obstetrics, Munich, Germany.
  15. Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Familial Breast and Ovarian Cancer, Cologne, Germany.
  16. Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Integrated Oncology (CIO), Cologne, Germany.
  17. Faculty of Medicine and University Hospital Cologne, University of Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany.
  18. Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.
  19. Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands.
  20. Family Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
  21. Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.
  22. Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
  23. Leipzig Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany.
  24. Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany.
  25. Inserm, U900, Institut Curie, PSL University, Mines ParisTech, Paris, France.
  26. Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA.
  27. Department of Medicine, University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA.
  28. Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
  29. Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK.
  30. School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.
  31. Discipline of Medical Genetics, The University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW, Australia.
  32. Division of Molecular Medicine, Pathology North, Newcastle, NSW, Australia.
  33. Cancer Genomics Program, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia.
  34. Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Vic, Australia. [email protected].
  35. Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Vic, Australia. [email protected].
  36. Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia. [email protected].

PMID: 33980861 PMCID: PMC8115524 DOI: 10.1038/s41523-021-00255-3

Abstract

Bi-allelic loss-of-function (LoF) variants in the base excision repair (BER) gene NTHL1 cause a high-risk hereditary multi-tumor syndrome that includes breast cancer, but the contribution of heterozygous variants to hereditary breast cancer is unknown. An analysis of 4985 women with breast cancer, enriched for familial features, and 4786 cancer-free women revealed significant enrichment for NTHL1 LoF variants. Immunohistochemistry confirmed reduced NTHL1 expression in tumors from heterozygous carriers but the NTHL1 bi-allelic loss characteristic mutational signature (SBS 30) was not present. The analysis was extended to 27,421 breast cancer cases and 19,759 controls from 10 international studies revealing 138 cases and 93 controls with a heterozygous LoF variant (OR 1.06, 95% CI: 0.82-1.39) and 316 cases and 179 controls with a missense variant (OR 1.31, 95% CI: 1.09-1.57). Missense variants selected for deleterious features by a number of in silico bioinformatic prediction tools or located within the endonuclease III functional domain showed a stronger association with breast cancer. Somatic sequencing of breast cancers from carriers indicated that the risk associated with NTHL1 appears to operate through haploinsufficiency, consistent with other described low-penetrance breast cancer genes. Data from this very large international multicenter study suggests that heterozygous pathogenic germline coding variants in NTHL1 may be associated with low- to moderate- increased risk of breast cancer.

References

  1. Breast Cancer Res. 2018 Jan 09;20(1):3 - PubMed
  2. JNCI Cancer Spectr. 2019 Apr 27;3(2):pkz027 - PubMed
  3. Nature. 2016 Aug 17;536(7616):285-91 - PubMed
  4. Genet Med. 2017 May;19(5):599-603 - PubMed
  5. Carcinogenesis. 2009 Aug;30(8):1345-52 - PubMed
  6. Cell Cycle. 2016;15(5):621-7 - PubMed
  7. Investig Genet. 2011 Jan 05;2(1):1 - PubMed
  8. Genome Biol. 2016 Feb 22;17:31 - PubMed
  9. J Natl Cancer Inst. 2019 Dec 1;111(12):1332-1338 - PubMed
  10. Neurosci Lett. 2006 Dec 1;409(2):112-7 - PubMed
  11. Biomark Res. 2015 May 01;3:9 - PubMed
  12. Cancer Cell. 2002 Mar;1(2):129-32 - PubMed
  13. BMC Genet. 2009 Jul 24;10:39 - PubMed
  14. Oncogene. 2004 Mar 25;23(13):2330-8 - PubMed
  15. Clin Genet. 2018 Dec;94(6):588-589 - PubMed
  16. Gastroenterology. 2020 Dec;159(6):2241-2243.e6 - PubMed
  17. Evid Based Ment Health. 2019 Nov;22(4):153-160 - PubMed
  18. Nat Commun. 2015 Jun 24;6:7505 - PubMed
  19. Genome Biol. 2015 Feb 27;16:49 - PubMed
  20. J Natl Cancer Inst. 2015 Apr 08;107(5): - PubMed
  21. Nat Commun. 2016 May 10;7:11479 - PubMed
  22. Cancer Res. 2012 Nov 1;72(21):5454-62 - PubMed
  23. Genome Biol. 2007;8(10):R215 - PubMed
  24. Clin Cancer Res. 2016 Aug 1;22(15):3764-73 - PubMed
  25. Br J Cancer. 2006 Jan 30;94(2):333-7 - PubMed
  26. Mol Oncol. 2015 Jan;9(1):115-27 - PubMed
  27. Proc Natl Acad Sci U S A. 2011 Oct 25;108(43):17773-8 - PubMed
  28. Br J Cancer. 2012 Nov 6;107(10):1776-82 - PubMed
  29. Med Oncol. 2014 Feb;31(2):828 - PubMed
  30. Nat Genet. 2014 Aug;46(8):912-918 - PubMed
  31. Nature. 2016 May 02;534(7605):47-54 - PubMed
  32. Nat Genet. 2015 Jun;47(6):668-71 - PubMed
  33. Fam Cancer. 2019 Apr;18(2):179-182 - PubMed
  34. J Pathol. 2018 May;245(1):53-60 - PubMed
  35. Sci Rep. 2019 Jun 21;9(1):9020 - PubMed
  36. Nat Genet. 2011 May;43(5):491-8 - PubMed
  37. Adv Med Biol. 2017 1st Quarter;118:83-122 - PubMed
  38. Science. 2017 Oct 13;358(6360):234-238 - PubMed
  39. Int J Cancer. 2019 Apr 15;144(8):1962-1974 - PubMed
  40. JAMA Netw Open. 2020 Jul 1;3(7):e208501 - PubMed
  41. J Mol Endocrinol. 2012 Mar 29;48(3):193-202 - PubMed
  42. Cancer Discov. 2012 Apr;2(4):366-375 - PubMed
  43. J Pathol. 2011 Jan;223(2):116-26 - PubMed
  44. Hum Mol Genet. 2012 Nov 1;21(21):4669-79 - PubMed
  45. Nat Genet. 2017 Oct;49(10):1476-1486 - PubMed
  46. Carcinogenesis. 2005 Dec;26(12):2031-45 - PubMed
  47. Hum Mutat. 2009 Jan;30(1):69-78 - PubMed
  48. Curr Protoc Bioinformatics. 2013;43:11.10.1-11.10.33 - PubMed
  49. Cancer Cell. 2019 Feb 11;35(2):256-266.e5 - PubMed
  50. Nat Genet. 2018 Oct;50(10):1346-1348 - PubMed
  51. Genome Res. 2012 Mar;22(3):568-76 - PubMed
  52. Oncotarget. 2020 Jun 16;11(24):2262-2272 - PubMed
  53. Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14314-9 - PubMed
  54. Nature. 2013 Feb 28;494(7438):492-496 - PubMed
  55. Am J Hum Genet. 2003 Sep;73(3):652-5 - PubMed
  56. Cell. 2014 Apr 24;157(3):595-610 - PubMed

Publication Types

Grant support